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1. The Reissner-Nordström metric

ds2 = −

(
1− rs

r
+

r2Q
r2

)
dt2 +

(
1− rs

r
+

r2Q
r2

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2, (1)

is the spherically symmetric, static solution to the Einstein field equations for a charged,
non-rotating black hole of mass M and charge Q. Here, rs = 2GM = 2GM/c2 is the
usual Schwarzschild radius, and r2Q = GQ2 = GQ2/c4 is a characteristic lengthscale
corresponding to the radial electric field associated with the black hole.

Show that this metric has two horizons:

r± =
1

2

(
rs ±

√
r2s − 4r2Q

)
.

Justify that consideration of geodesics can be restricted to the θ = π/2 plane. Then,
show that geodesic motion of uncharged test-particles in (1) admits two conserved quan-
tities

E =

(
1− rs

r
+

r2Q
r2

)
ṫ, J = r2ϕ̇,

where the dot denotes differentiation with respect to some affine parameter. What are
the corresponding Killing vectors Ka? Show that

ṙ2 + Veff(r) = E2 − k2,

giving expressions for the effective potential Veff(r) and constant k. Show that a massive
particle initially at rest far away from the black hole has a minimum radius that it can
reach of Q2/2M . Considering null geodesics, use your expression for Veff(r) to show that
no stable circular orbit exists for r > r+. [Hint: Recall that, for some Killing vector
Kb, gabẋ

aKb is constant along affinely parametrised geodesics.] [13]

In the remainder of this question, we shall derive the time taken for a black hole to
evaporate due to Hawking radiation. For this, we will need to know the surface gravity
κ on a horizon, defined implicitly as

∇a(−KbKb)
∣∣∣
horizon

= 2κKa|horizon , (2)

whereKa is a Killing vector of the metric, and both sides of this expression are evaluated
on the horizon in question.

(a) To find κ, we consider the coordinate transformation

dv = dt+

(
1− rs

r
+

r2Q
r2

)−1

dr.

Re-write the metric (1) using this coordinate transformation. What are the Killing
vectors in this new coordinate system? [2]



(b) By considering an appropriate Killing vector, use (2) to show that the surface
gravity at the outer and inner horizons is

κ± = ±r+ − r−
2r2±

.
[5]

(c) The blackbody luminosity of a black hole due to Hawking radiation is given
by L = AσT 4, where A is the surface area of the black hole at the horizon, σ is the
Stefan-Boltzmann constant, and T = (h̄c)/(2πkB)κ is the Hawking temperature. Show
that for Q = 0, the time taken for the black hole to evaporate due to Hawking radiation
from the outer horizon r+ is

t∞ =
256π3

3

k4BG
2

h̄4c6σ
M3 =

5120πG2

h̄c4
M3.

Find the lifetime of a solar-mass black hole; do we expect to be able to observe a black
hole evaporating? [5]
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2. Consider a two dimensional spacetime with invariant interval

ds2 = e2gξ(−dη2 + dξ2),

where g is a positive constant.

(a) Show that

E = e2gξη̇, L = e2gξ
(
−η̇2 + ξ̇2

)
,

are conserved along geodesics, where the dot denotes differentiation with respect to the
affine parameter. [3]

(b) By considering an equation for (dξ/dη)2, or otherwise, show that E2 ≥ e2gξ

for timelike observers. Hence explain why an observer following a timelike geodesic who
initially moves in the +ξ direction will eventually turn around and approach ξ = −∞. [5]

(c) Compute the four-velocity and four-acceleration of stationary observers in this
spacetime. [5]

(d) Suppose that a stationary observer at ξ = ξ1 sends a photon to another sta-
tionary observer at ξ = ξ2. If these observers measure frequencies ω1 and ω2 respectively,
show that

ω2

ω1
= e−g(ξ2−ξ1).

[Hint: consider some vector Ka satisfying gabK
avb = constant along a geodesic with

tangent vb.] [6]

(e) Consider some new coordinate χ such that

1 + gχ = egξ.

What is the metric in (η, χ) coordinates? Re-express your result of (d) in these new
coordinates, and interpret your result in terms of gravitational time dilation for gχ ≪ 1.
For E = 1, to what range of χ are timelike observers confined? [6]
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3. Consider a family of geodesics xa(λ, s), where λ is the affine parameter, and s is
a parameter labelling a given geodesic. We then define the vectors

va =
∂xa

∂λ
, na =

∂xa

∂s
.

Give geometrical interpretations of these vectors, and write down an expression for
the geodesic equation in terms of the covariant derivative and one of these vectors.
Assuming a torsion free connection, show that ∇nv

a = ∇vn
a, where ∇n = nb∇b and

∇v = vb∇b. Then, prove that the vector na satisfies:

∇v∇vn
a = Ra

bcdv
bvcnd, (3)

where the Riemann curvature tensor is given by

Ra
bcd = ∂cΓ

a
db − ∂dΓ

a
cb + Γa

ceΓ
e
db − Γa

deΓ
e
cb.

Give a physical interpretation of (3); does your answer make sense in the limit of zero
curvature? [10]

We now consider the weak-gravity limit, in which the metric consists of a small pertur-
bation on a Minkowski background:

gab = ηab + hab, ηab = diag(−1, 1, 1, 1), |hab| ≪ 1.

(a) State the conditions under which the metric perturbation hab is said to be
in the tranverse-traceless gauge. Are we always allowed to choose this gauge in our
treatment of gravitational radiation? [3]

(b) Show that the Newtonian limit of (3) is given by

∂2na

∂t2
=

1

2
nb∂

2hab
∂t2

when hab is in the traceless-transverse gauge, and satisfies h00 = 0. [7]

(c) Consider a metric perturbation of the form(
hxx hxy
hyx hyy

)
= h× sin [ω(z − t)]

(
0 1
1 0

)
with all other components being zero. Suppose that such a perturbation impinges on
two particles of equal mass, initially stationary in the z = 0 plane at (x, y) = ±(a/2, 0).
Using your result of part (a), calculate the time evolution of the separation of the two
particles as a function of time, to first order in h×. [5]
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4. The Friedmann-Robertson-Walker (FRW) metric

ds2 = −dt2 + a(t)2
[

dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

]
, (4)

is a solution to Einstein’s field equations over a three-dimensional manifold of constant
curvature for scale factor a(t). One can then show that Einstein’s field equations in the
presence of a cosmological constant Λ reduce to the Friedmann equations:(

ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
,

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
.

Here, ρ and p are the energy densities and pressures respectively of an isotropic, perfect
fluid. Show that the energy density ρ satisfies the continuity equation:

ρ̇+ 3
ȧ

a
(ρ+ p) = 0.

By adopting the equation of state for a polytropic fluid p = wρ, find how the density
depends on the scale factor for general w. Consider the cases of pressureless matter
(w = 0) and radiation (w = 1/3), and give physical explanations for the dependence of
each on the scale factor. [4]

Consider a universe consisting of only matter, with a non-zero cosmological constant Λ.
Show that this has a static solution for which the density and scale factor are given by

ρ0 =
Λ

4πG
, a20 =

1

Λ
.

What value must k take in such a model? By linearising around this state of equilibrium,
or otherwise, show that such a universe will be unstable to small perturbations in the
scale factor. Give an example of an observation that demonstrates that we do not exist
in a static universe. [8]

In the remainder of this question, we shall consider the so-called horizon problem of
cosmology. Recombination refers to the time at which charged electrons and protons
first become bound to form electrically neutral hydrogen atoms. At this point, photons
became decoupled from the remaining matter, and began to freely stream across the
Universe; we now observe these photons as the cosmic microwave background (CMB).
Henceforth assume that we are in a flat universe with no cosmological constant.

(a) Write down an expression for the redshift factor z in terms of a(t), the scale
factor at some time t, and a0 = a(t0), the scale factor at current time. [1]

(b) If the temperature at recombination was 3000K, and the current temperature
of the CMB is 2.72K, estimate the redshift factor at recombination zrec, assuming that
the temperature T scales as T ∝ a−1. [2]

(c) Assuming a matter dominated universe, find expressions for the conformal
time at present η0 and the conformal time at recombination ηrec in terms of zrec. [5]

(d) Calculate the ratio ηrec/η0 using your answer from (b), expressing your answer
in degrees. What does this ratio correspond to? Hence explain why it it is puzzling
that we observe the CMB temperature to be isotropic. [5]
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