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1. The Reissner-Nordström metric

ds2 = −

(
1− rs

r
+

r2Q
r2

)
dt2 +

(
1− rs

r
+

r2Q
r2

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2, (1)

is the spherically symmetric, static solution to the Einstein field equations for a charged,
non-rotating black hole of mass M and charge Q. Here, rs = 2GM = 2GM/c2 is the
usual Schwarzschild radius, and r2Q = GQ2 = GQ2/c4 is a characteristic lengthscale
corresponding to the radial electric field associated with the black hole.

Show that this metric has two horizons:

r± =
1

2

(
rs ±

√
r2s − 4r2Q

)
.

Justify that consideration of geodesics can be restricted to the θ = π/2 plane. Then,
show that geodesic motion of uncharged test-particles in (1) admits two conserved quan-
tities

E =

(
1− rs

r
+

r2Q
r2

)
ṫ, J = r2ϕ̇,

where the dot denotes differentiation with respect to some affine parameter. What are
the corresponding Killing vectors Ka? Show that

ṙ2 + Veff(r) = E2 − k2,

giving expressions for the effective potential Veff(r) and constant k. Show that a massive
particle initially at rest far away from the black hole has a minimum radius that it can
reach of Q2/2M . Considering null geodesics, use your expression for Veff(r) to show that
no stable circular orbit exists for r > r+. [Hint: Recall that, for some Killing vector
Kb, gabẋ

aKb is constant along affinely parametrised geodesics.] [13]

Solution: As with the Schwarszchild metric, the horizons of the Reissner-Nordstrom
(RN) metric occur where grr diverges, giving

0 = 1− rs
r
+

r2Q
r2

⇒ r± =
1

2

(
rs ±

√
r2s − 4r2Q

)
,

as required. Similarly, we can also restrict our consideration of geodesics to the
θ = π/2 plane due to spherical symmetry.



Throughout the remainder of the solution, we shall define

f(r) = 1− rs
r
+

r2Q
r2

Using the geodesic equation for c = 0, we have that

d

dλ
(g00ẋ

0) = 0 ⇒ f(r)ṫ = E,

while for c = ϕ, we have that

d

dλ
(gϕϕẋ

ϕ) = 0 ⇒ r2 sin2 θ ϕ̇ = J,

with the results following for θ = π/2. As in Schwarzschild, the corresponding
Killing vectors are K0 = (1, 0, 0, 0) and Kϕ = (0, 0, 0, 1).

Defining k = dτ/dλ, the interval gives

−k2 = −f ṫ2 + f−1ṙ2 + r2θ̇2 + r2ϕ̇2.

Using our expressions for the conserved quantities, this can be written as

ṙ2 +
J2

r2
f + k2(f − 1) = E2 − k2 ⇒ ṙ2 + Veff(r) = E2 − k2.

Thus, our expression for the effective potential is

Veff(r) =
J2

r2

(
1− rs

r
+

r2Q
r2

)
+ k2

(
−rs

r
+

r2Q
r2

)
.

For a massive particle initially at rest far away from the black hole, E = k = 1.
Considering purely radial geodesics (J = 0), our expression becomes

ṙ2 − rs
r
+

r2Q
r2

= 0.

Setting ṙ = 0, we find that r = r2Q/rs = Q2/GM is the minimal radius reachable
by such a particle. For null geodesics (k = 0), the effective potential is

Veff(r) =
J2

r2

(
1− rs

r
+

r2Q
r2

)
= J2 (r − r+)(r − r−)

r4
.

Clearly, Veff is only negative for radii in the range r− < r < r+, meaning that any
minimum that it may have occurs in this range as well; all other extrema will be
maxima since Veff > 0 for r → 0,∞. This is particularly obvious from a sketch.
This means that there is no minimum for r > r+, and hence no stable circular null
orbits for r > r+.



In the remainder of this question, we shall derive the time taken for a black hole to
evaporate due to Hawking radiation. For this, we will need to know the surface gravity
κ on a horizon, defined implicitly as

∇a(−KbKb)
∣∣∣
horizon

= 2κKa|horizon , (2)

whereKa is a Killing vector of the metric, and both sides of this expression are evaluated
on the horizon in question.

(a) To find κ, we consider the coordinate transformation

dv = dt+

(
1− rs

r
+

r2Q
r2

)−1

dr.

Re-write the metric (1) using this coordinate transformation. What are the Killing
vectors in this new coordinate system? [2]

Solution: In the new coordinate system, the RN metric becomes

ds2 = −

(
1− rs

r
+

r2Q
r2

)
dv2 + 2dvdr + r2dθ2 + r2 sin2 θdϕ2.

In this new coordinate system, we have the Killing vectors Kv = (1, 0, 0, 0) and
Kϕ = (0, 0, 0, 1).

(b) By considering an appropriate Killing vector, use (2) to show that the surface
gravity at the outer and inner horizons is

κ± = ±r+ − r−
2r2±

.
[5]



Solution: As an aside, κ is usually defined as

(Kb∇b)Ka = κKa.

However, it is easy to show that the expression we have adopted can be written in
this form using Killing’s equation:

∇a(−KbKb) = −2Kb∇aKb = 2Kb∇bKa = 2κKa

Considering Ka = K0, the left-hand side of (2) can be written as

∇a(−gabK
aKb) = −∇agvv,

while the right-hand side can be written as

2κKa = 2κgabK
b = 2κgav.

This means that

−∇agvv = κgav = κ(gvv, grv).

Noting that at gvv = 0, grv = 1 at r = r±, we thus have that

κ = −1

2
(∇vgvv +∇rgvv) = −1

2
∂rgvv =

1

2
∂rf(r)

Now,

f(r) =
(r − r+)(r − r−)

r2
⇒ ∂rf(r) = −2(r − r+)(r − r−)

r3
+

2r − r+ − r−
r2

meaning that at the horizons, we have

κ± = ±r+ − r−
2r2±

,

which is the desired result.

(c) The blackbody luminosity of a black hole due to Hawking radiation is given
by L = AσT 4, where A is the surface area of the black hole at the horizon, σ is the
Stefan-Boltzmann constant, and T = (h̄c)/(2πkB)κ is the Hawking temperature. Show
that for Q = 0, the time taken for the black hole to evaporate due to Hawking radiation
from the outer horizon r+ is

t∞ =
256π3

3

k4BG
2

h̄4c6σ
M3 =

5120πG2

h̄c4
M3.

Find the lifetime of a solar-mass black hole; do we expect to be able to observe a black
hole evaporating? [5]



Solution: ForQ = 0, the RNmetric (1) simply reduces to the Schwarzschild metric,
and r+ = rs, so κ+ = −κ− = 1/(2rs). Using the fact that A = 4πr2s , we have that

L = AσT 4 = 4πr2sσ

(
h̄c

2πkB
κ

)4

=
h̄4c4σ

64π3k4B

1

r2s
=

h̄4c8σ

256π3k4BG
2

1

M2
.

Now, by mass energy equivalence, the energy lost due to the Hawking radiation
will come from the mass of the black hole, so L = −d(Mc2)/dt. Using this in the
above expression, and integrating, arrive at the desired expression. This can also
be written as

t∞ =

(
M

M⊙

)3

× 2.1× 1067 years.

The lifetime of a solar-mass black hole is more than 57 orders of magnitude longer
than the present age of the universe. However, this does not even take into account
the fact that such a black-hole is colder than the cosmic microwave radiation in
which it sits (T ≃ 6.17 × 10−8 K), and so is not in thermodynamic equilibrium.
Indeed, any black hole with a mass greater than approximately 0.75 of the mass of
the earth is colder than the CMB, and actually increases in mass. As the universe
expands and cools the CMB, it will eventually become possible for larger black holes
to evaporate due to Hawking radiation.

[Turn over]



2. Consider a two dimensional spacetime with invariant interval

ds2 = e2gξ(−dη2 + dξ2),

where g is a positive constant.

(a) Show that

E = e2gξη̇, L = e2gξ
(
−η̇2 + ξ̇2

)
,

are conserved along geodesics, where the dot denotes differentiation with respect to the
affine parameter. [3]

Solution: Recall the geodesic equation

d

dλ
(gacẋ

a) =
1

2
(∂cgab)ẋ

aẋb.

For c = η, this gives that

d

dλ
(gηηη̇) = constant ⇒ E = e2gξη̇.

The second conserved quantity follows trivially from the metric:

L = −
(
dτ

dλ

)2

= e2gξ
(
−η̇2 + ξ̇2

)
.

(b) By considering an equation for (dξ/dη)2, or otherwise, show that E2 ≥ e2gξ

for timelike observers. Hence explain why an observer following a timelike geodesic who
initially moves in the +ξ direction will eventually turn around and approach ξ = −∞. [5]

Solution: For timelike geodesics, we have that L = 1, meaning that

−1 = e2gξ
(
−η̇2 + ξ̇2

)
⇒

(
dξ

dη

)2

= 1− e−2gξ

η̇2
= 1− e2gξ

E2
.

Given that the left-hand side of this expression is positive definitive, we must have
that E2 ≥ e2gξ. If ξ̇ > 0 initially, then the above implies that ξ will increase until
E = e2gξ, at which there is a turning point. This means that the trajectory will
always eventually turn around and approach ξ = −∞.

(c) Compute the four-velocity and four-acceleration of stationary observers in this
spacetime. [5]



Solution: A stationary observer has four-velocity ua = (η̇, 0). From the usual
normalisation condition:

uaua = −1 ⇒ −e2gξη̇2 = −1 ⇒ ua = (e−gξ, 0).

The four-acceleration is then

ac = (ub∇b)u
c = ub

(
∂bu

c + Γc
bdu

d
)
= uη(∂ηu

c + Γc
ηηu

η) = Γc
ηη(u

η)2,

where we have used the fact that derivatives with respect to η vanish. Using the
geodesic equation for c = ξ,

d

dλ
(gξξ ξ̇) =

1

2

(
∂ξe

2gξ
)(

−η̇2 + ξ̇2
)

gξξ ξ̈ + 2ge2gξ ξ̇2 = ge2gξ
(
−η̇2 + ξ̇2

)
⇒ ξ̈ + gξ̇2 + gη̇2 = 0.

This means that the only non-zero Christoffel symbol of the form Γc
ηη is Γξ

ηη =
g. Putting this all together, this means that the four-acceleration of stationary
observers is given by

ac =
(
0, ge−2gξ

)
.

(d) Suppose that a stationary observer at ξ = ξ1 sends a photon to another sta-
tionary observer at ξ = ξ2. If these observers measure frequencies ω1 and ω2 respectively,
show that

ω2

ω1
= e−g(ξ2−ξ1).

[Hint: consider some vector Ka satisfying gabK
avb = constant along a geodesic with

tangent vb.] [6]

Solution: For a vector Ka that is Killing for the metric gab, it is easy to show that
gabK

avb = constant along a geodesic with tangent vb. Then, we have that

E = e2gξη̇ = gηηK
ηη̇ ⇒ Kη = 1, Kξ = 0.

The frequency of the photon as measured by the stationary observer will be ω =
uava. This means that

ω2

ω1
=

ua2v2a
ua1v1a

=
e−gξ2Kav2a
e−gξ1Kav1a

= e−g(ξ2−ξ1),

as required.



(e) Consider some new coordinate χ such that

1 + gχ = egξ.

What is the metric in (η, χ) coordinates? Re-express your result of (d) in these new
coordinates, and interpret your result in terms of gravitational time dilation for gχ ≪ 1.
For E = 1, to what range of χ are timelike observers confined? [6]

Solution: The metric transformation gives

gdχ = degξ = gegξdξ ⇒ dξ = e−gξdχ.

In the new coordinates, our metric then becomes

ds2 = e2gξ
(
−dη2 + dξ2

)
= −(1 + gχ)2dη2 + dχ2.

Our result of (d) can be rewritten in these coordinates as

ω2

ω1
= e−g(ξ2−ξ1) =

1 + gχ1

1 + gχ2
≃ 1− g(χ2 − χ1),

meaning that the red/blue-shift in the frequency is given by the difference in the
gravitational potentials Φ = gχ in this limit. Now, we can rewrite the coordinate
transformation as

χ =
1

g

(
egξ − 1

)
≤ 1

g
(|E| − 1),

where we have used the result of (b). This means that for E = 1, χ ≤ 0.

[Turn over]



3. Consider a family of geodesics xa(λ, s), where λ is the affine parameter, and s is
a parameter labelling a given geodesic. We then define the vectors

va =
∂xa

∂λ
, na =

∂xa

∂s
.

Give geometrical interpretations of these vectors, and write down an expression for
the geodesic equation in terms of the covariant derivative and one of these vectors.
Assuming a torsion free connection, show that ∇nv

a = ∇vn
a, where ∇n = nb∇b and

∇v = vb∇b. Then, prove that the vector na satisfies:

∇v∇vn
a = Ra

bcdv
bvcnd, (3)

where the Riemann curvature tensor is given by

Ra
bcd = ∂cΓ

a
db − ∂dΓ

a
cb + Γa

ceΓ
e
db − Γa

deΓ
e
cb.

Give a physical interpretation of (3); does your answer make sense in the limit of zero
curvature? [10]

Solution: Geometrically, va and na are the tangent and normal vectors for a given
family of geodesics. The geodesic equation can be expressed in terms of the parallel
transport condition as (vb∇b)v

a = ∇vv
a = 0. Then, we have that

∇nv
a −∇vn

a = nb∇bv
a − vb∇bn

a = nb∂bv
a − vb∂bn

a + nbΓa
bcv

c − vbΓa
bcn

c

=
∂xb

∂s

∂

∂xb
∂xa

∂λ
− ∂xb

∂λ

∂

∂xb
∂xa

∂s
=

∂xa

∂s∂λ
− ∂xa

∂λ∂s
= 0,

as required. To prove the geodesic deviation equation, we consider

∇v∇vn
a = ∇v∇nv

a = vc∇c(n
d∇dv

a) = vcnd∇c∇dv
a + (vc∇cn

d)(∇dv
a)

= vcnd∇c∇dv
a − vcnd∇d∇cv

a + vcnd∇d∇cv
a + (nc∇cv

d)(∇dv
a)

= vcnd(∇c∇d −∇d∇c)v
a + nd∇d(v

c∇cv
a)

= vcndRa
bcdv

b,

and so the desired result follows. We have used the fact that ∇nv
a = ∇vn

a in
the first equality, and moving to the second line. (3) is the geodesic deviation
equation, which describes the relative acceleration of neighbouring geodesics due to
the curvature of spacetime, and hence the dynamical dependence of normal vector
na on the Riemann tensor. In the limit of vanishing curvature, geodesics are straight
lines, which evidently do not diverge, which makes sense.

We now consider the weak-gravity limit, in which the metric consists of a small pertur-
bation on a Minkowski background:

gab = ηab + hab, ηab = diag(−1, 1, 1, 1), |hab| ≪ 1.

(a) State the conditions under which the metric perturbation hab is said to be
in the tranverse-traceless gauge. Are we always allowed to choose this gauge in our
treatment of gravitational radiation? [3]



Solution: hab is said to be in the transverse-traceless gauge if it satisfies the har-
monic gauge condition, ∂ahab = 0, as well as ha0 = h0a = haa = 0. We are always
allowed to adopt the tranverse-traceless gauge due to the coordinate gauge freedom
that is present.

(b) Show that the Newtonian limit of (3) is given by

∂2na

∂t2
=

1

2
nb∂

2hab
∂t2

when hab is in the traceless-transverse gauge, and satisfies h00 = 0. [7]

Solution: In the Newtonian limit, the timelike components of vb and vc will dom-
inate, meaning that

∇v∇vn
a ≃ Ra

00dn
d = −Ra

0d0n
d.

Given that we are in the weak-gravity limit, we ignore products of the connection
coefficients in the Riemann tensor. Then:

Ra
0c0 = ∂cΓ

a
00 − ∂0Γ

a
0c

= ∂c
1

2
gad(∂0h0d + ∂0hd0 − ∂dh00)− ∂0

1

2
gad(∂ch0d + ∂0hcd − ∂dh00)

= −1

2
gad∂0∂0hcd = −1

2
∂0∂0h

a
c,

where we have used the fact that h0d = 0 in the transverse-traceless gauge, as well
as assuming that h00 = 0. This means that

∇v∇vn
a =

1

2
nb∂0∂0h

a
b.

Now,

∇v∇vn
a = ∇v

[
vb (∂bn

a + Γa
bcn

c)
]
≃ ∇v

[
vb∂bn

a
]
≃ ∇v∂0n

a ≃ ∂2
0n

a.

where we have used the fact that va ≃ v0 to leading order. Substituting these into
the above, the desired result follows.

(c) Consider a metric perturbation of the form(
hxx hxy
hyx hyy

)
= h× sin [ω(z − t)]

(
0 1
1 0

)
with all other components being zero. Suppose that such a perturbation impinges on
two particles of equal mass, initially stationary in the z = 0 plane at (x, y) = ±(a/2, 0).
Using your result of part (a), calculate the time evolution of the separation of the two
particles as a function of time, to first order in h×. [5]



Solution: Due to the form of the metric, the result of part (b) becomes

∂2ni

∂t2
=

1

2
nj

∂2hij
∂t2

≃ 1

2
nj(0)

∂2hij
∂t2

,

where we have evaluated nj on the right-hand side to zeroth order (equal to its value
at t = 0), as the metric perturbation hij is already first order. Integrating, we thus
have that

ni(t) =
1

2
nj(0)hij + ṅi(0)t+ ni(0).

Given that the particles are initially stationary, ṅi(0) = 0. Given the initial condi-
tions nx(0) = a, ny(0) = 0, we thus find that

nx(t) = a, ny(t) =
1

2
ah× sin(ωt).

Thus, the particles oscillate back-and-forth relative to one another along the y-axis.

[Turn over]



4. The Friedmann-Robertson-Walker (FRW) metric

ds2 = −dt2 + a(t)2
[

dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

]
, (4)

is a solution to Einstein’s field equations over a three-dimensional manifold of constant
curvature for scale factor a(t). One can then show that Einstein’s field equations in the
presence of a cosmological constant Λ reduce to the Friedmann equations:(

ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
,

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
.

Here, ρ and p are the energy densities and pressures respectively of an isotropic, perfect
fluid. Show that the energy density ρ satisfies the continuity equation:

ρ̇+ 3
ȧ

a
(ρ+ p) = 0.

By adopting the equation of state for a polytropic fluid p = wρ, find how the density
depends on the scale factor for general w. Consider the cases of pressureless matter
(w = 0) and radiation (w = 1/3), and give physical explanations for the dependence of
each on the scale factor. [4]

Solution: Take the time derivative of the first Friedmann equation, we have that

2
ȧ

a

(
ä

a
− ȧ2

a2

)
=

8πG

3
ρ̇+

2k

a3
ȧ.

Substituting the first and second Friedmann equation into this expression, it is a line
of algebra to show the desired result. Letting p = wρ, we find that ρ ∝ a−3(1+w).
We consider various values of w:

• Pressureless matter (w = 0): ρm ∝ a−3. This is simply the decrease in the
number density of the particles/matter as the universe is expanding with the
scale factor.

• Radiation (w = 1/3): ργ ∝ a−4. The energy density of radiation falls off more
quickly than matter. This is because the number density of photons decreases
in the same way as the number density of pressureless matter, but individual
photons also lose energy as a−1 due to cosmological redshift.

Consider a universe consisting of only matter, with a non-zero cosmological constant Λ.
Show that this has a static solution for which the density and scale factor are given by

ρ0 =
Λ

4πG
, a20 =

1

Λ
.

What value must k take in such a model? By linearising around this state of equilibrium,
or otherwise, show that such a universe will be unstable to small perturbations in the
scale factor. Give an example of an observation that demonstrates that we do not exist
in a static universe. [8]



Solution: Given that matter is pressureless, the steady-state Friedmann equations
yield

0 =
8πG

3
ρ0 −

k

a20
+

Λ

3
, 0 = −4πG

3
ρ0 +

Λ

3
.

Solving these simultaneously yields

k = 4πGρ0a
2
0,

k

a20
= Λ ⇒ ρ0 =

Λ

4πG
, a20 =

1

Λ
.

Clearly, the first expression in the line above implies that k = 1 (closed universe),
since ρ0, a0 > 0. Letting ρ = ρ0+ δρ, a = a0+ δa in the second Friedmann equation
and retaining only linear terms, we have

δä = −4πG

3
(ρ0 + δρ)(a0 + δa) +

Λ

3
(a0 + δa) = −4πG

3
a0δρ.

From the continuity equation, we have that

δρ

ρ
= −3

δa

a
⇒ δρ = −3

ρ0
a0

δa,

to linear order. This means that

δä = −4πG

3
a0δρ = 4πGρ0δa = Λδa ⇒ δa ∝ eΛt.

Hence, such a static solution is unstable to small perturbations. Such a model would
display no redshift for distant objects, which is something that we actually observe
in the real universe.

In the remainder of this question, we shall consider the so-called horizon problem of
cosmology. Recombination refers to the time at which charged electrons and protons
first become bound to form electrically neutral hydrogen atoms. At this point, photons
became decoupled from the remaining matter, and began to freely stream across the
Universe; we now observe these photons as the cosmic microwave background (CMB).
Henceforth assume that we are in a flat universe with no cosmological constant.

(a) Write down an expression for the redshift factor z in terms of a(t), the scale
factor at some time t, and a0 = a(t0), the scale factor at current time. [1]

Solution: Here, we can simply quote the result that

1 + z =
a0
a(t)

.

(b) If the temperature at recombination was 3000K, and the current temperature
of the CMB is 2.72K, estimate the redshift factor at recombination zrec, assuming that
the temperature T scales as T ∝ a−1. [2]



Solution: From the relationship between temperature and scale factor, we have
that

Trec

TCMB
=

a0
arec

= 1 + zrec ⇒ zrec ≃ 1100.

(c) Assuming a matter dominated universe, find expressions for the conformal
time at present η0 and the conformal time at recombination ηrec in terms of zrec. [5]

Solution: For a matter dominated universe, the first Friedmann equation can be
written as (

ȧ

a

)2

=
8πG

3
ρ = H2

0

(a0
a

)3
.

Setting a0 = 1 as usual, we have that

1

a

da

dt
= H0a

−3/2 ⇒ dt =
a1/2

H0
da.

Using this result to calculate the conformal time, we have

η =

∫ a2

a1

dt

a(t)
=

1

H0

∫ a2

a1

da

a1/2
=

2

H0

(
a
1/2
2 − a

1/2
1

)
=

2

H0

(
1√

1 + z2
− 1√

1 + z1

)
,

where z1, z2 are the redshifts at a1, a2 respectively. The conformal time at present
corresponds to a1 = 0, a2 = 1, while the conformal time at recombination corre-
sponds to a1 = 0, a2 = arec, such that

η0 =
2

H0
, ηrec =

2

H0

1√
1 + zrec

.

(d) Calculate the ratio ηrec/η0 using your answer from (b), expressing your answer
in degrees. What does this ratio correspond to? Hence explain why it it is puzzling
that we observe the CMB temperature to be isotropic. [5]



Solution: Using the result for zrec calculated in (b), we have that

θ =
ηrec
η0

=
1√

1 + zrec
≃ 0.03 ≃ 1.7 degrees.

This ratio corresponds to the angular size of patches of the CMB that should be
in causal contact with one another; light rays that reach us from the origin of the
universe can only be causally connected if they were within ηrec of one another
at recombination. However, as stated, the CMB is observed to have an istropic
temperature distribution, and is thus in thermal equilibrium. This means that it is
not well explained by the standard explanations of the expansion of the universe.
Cosmic inflation is a possible resolution to this problem.
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