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Problem Set 1: Tensors, Derivatives and Spacetime

1. Explain why each equation below is ambiguous or inconsistent. Provide a possible
correct version of each one.

i.) x′a = Labxb

ii.) x′a = Lb
cM

c
dx

d

iii.) x′a = La
cx

c +M c
dx

d

iv.) δab = δacδ
c
d

v.) ϕ = (xaAa)(y
aBa)

2. We define a (contravariant) vector va as a quantity that transforms as

v′
a
= Λa

bv
b, Λa

b ≡
∂x′a

∂xb
,

under a coordinate transformation {x} 7→ {x′}. By demanding that the scalar ϕ = vaωa

is invariant under coordinate transformations, derive the transformation properties of
one-forms ωa. These are often referred to as covariant vectors.

3. The action of the covariant derivative on a vector va can be written as

∇av
b = ∂av

b + Γb
acv

c,

where Γa
bc are known as the Christoffel symbols or connection coefficients.

i.) What is the action of the covariant derivative ∇a on a scalar? Use this to
show how ∇a must act on a one-form ωa.

ii.) By demanding that the covariant derivative transforms as a (1, 1) tensor, show
that the Christoffel symbols must transform as

Γ′b
ac =

∂xe

∂x′c
∂xc

∂x′a
∂x′b

∂xd
Γd

ce −
∂xe

∂x′c
∂xc

∂x′a
∂x′b

∂xc∂xe
.

iii.) The Levi-civita connection is said to be metric compatible (∇agbc = 0)
and torsion free (Γa

bc = Γa
cb). By considering cyclic permutations, show that these

constraints imply

Γa
bc =

1

2
gad (∂bgcd + ∂cgbd − ∂dgbc) .

4. Consider a static spacetime with metric

ds2 = gabdx
adxb = g00dt

2 + 2g0idtdx
i + gijdx

idxj ,

where the indices i and j refer to spatial components of the metric. Using the nor-
malisation condition uaua = −1, find the four-velocity ua of a static observer in this
spacetime.



Consider a spatial hypersurface such that uadx
a = 0. Using this, show that the

interval on such a hypersurface is given by

ds2(n−1) = γijdx
idxj where γij = gij −

g0ig0j
g00

.

Furthermore, by considering gabg
bc = δ c

a , or otherwise, show that γij = gikgjℓγkℓ = gij .
Interpret the meaning of these results with reference to the static observer ua.

5. Consider the metric for 3-dimensional Minkowski space (t′, r′, ϕ′):

ds2 = −dt′
2
+ dr′

2
+ r′

2
dϕ′

2
.

i.) We perform a coordinate transformation to a frame which is rotating with a
constant angular velocity Ω:

t′ = t, r′ = r, ϕ′ = ϕ+ ωt.

What is the metric in the rotating frame (t, r, ϕ)?

ii.) Consider a static observer in the rotating frame who is located at the position
(r, ϕ) = (R, 0). How is the proper time of this observer related to the coordinate time
t? Explain the physical significance of this result.

iii.) Compute the four-acceleration Aa = ub∇bu
a for this static observer with

four-velocity ua. Explain the physical significance of this result.

iv.) Using your results from Question 4, compute the induced spatial metric γij
for observers rotating with angular velocity ω in 3-dimensional Minkowski space. Using
this, compute the circumference of a circle with radius R as measured by these observers,
and explain the physical significance of the result.



6. Let us start from a global inertial frame in Minkowski space (t, x, y, z). Now
consider the transformation to a non-inertial frame (t′, x′, y′, z′) such that

t =

(
1

g
+ z′

)
sinh(gt′), x = x′, y = y′, z =

(
1

g
+ z′

)
cosh(gt′)− 1

g
,

for some constant g.

i.) For gt′ ≪ 1, show that this transformation corresponds to a uniformly accel-
erated reference frame in Newtonian mechanics.

ii.) Plot the trajectory of the point z′ = 0 in the inertial frame.

iii.) Show that a clock at rest at z′ = h runs fast compared to a clock at rest at
z′ = 0 by the factor (1 + gh), as observed in the inertial frame. Use the equivalence
principle to interpret this result in terms of gravitational time dilation.

iv.) What is the line element ds2 of a uniform gravitational field?

7. The energy-momentum tensor of a perfect fluid in Minkowski space is given by

T ab = pηab + (p+ ρ)uaub,

where ua is the four-velocity of the fluid, and ηab = diag(−1, 1, 1, 1). By considering an
observer at rest with respect to the motion of the fluid, explain the physical meaning
of p and ρ.

The equation of motion of a perfect fluid in a local inertial frame is

∂aT
ab = 0. (1)

The remainder of this question is devoted to deriving the equations of fluid mechanics
from this one expression. To begin, show that the tensor

hab = δab + uaub,

satisfies habu
b = 0, habh

b
c = hac and haa = 3, and therefore explain why hab is a

projector onto the three-dimensional hypersurfaces perpendicular to ua. What is the
meaning of the tensor hab = ηach

c
b? By projecting (1) parallel and perpendicular to the

four-velocity ua, show that

∂a(ρu
a) + p∂au

a = 0, (p+ ρ)(ub∂b)u
a + hab∂bp = 0. (2)

In the Newtonian limit, we approximate that ui ≪ u0, p ≪ ρ and |u|(∂p/∂t) ≪ |∇p|.
What is the physical intuition behind each of these approximations? Using these, show
that (2) reduces to the familiar fluid equations:

∂ρ

∂t
+∇ · (ρu) = 0, ρ

(
∂

∂t
+ u · ∇

)
u = −∇p.



Problem Set 2: Geodesics, Curvature and Schwarzschild

8. Consider a curve xa(λ) in a metric space gab parametrised by some (real) affine
parameter λ. What is the condition for this curve to be time-like? By considering
variations of the functional

S =

∫
dτ =

∫
dλ L(x, ẋ, λ), L =

dτ

dλ
=

√
−gabẋaẋb, (3)

show that
d

dλ
(gacẋ

a) =
1

2
(∂cgab)ẋ

aẋb, (4)

where we recall that the dot indicates differentiation with respect to the affine param-
eter λ. This is the geodesic equation.

A geodesic curve is defined as one that parallel transports its own tangent vector. From
this, show that an alternative expression for the geodesic equation is

ẍa + Γa
bcẋ

bẋc = 0. (5)

By direct calculation, show that (4) is equivalent to (5). Lastly, by considering the total
derivative of the Hamiltonian

H =
∂L
∂ẋa

ẋa − L,

show that the Hamiltonian is conserved for the Lagrangian defined in (3). What is the
condition for it to be conserved for a general Lagrangian L?

9. The Lie derivative of a (2, 0) tensor with respect to a vector field xa is given by

LxTab = (xc∂c)Tab + (∂ax
c)Tcb + (∂bx

c)Tac. (6)

Show that you can replace any ∂a with any covariant derivative ∇a in this expression,
and so argue that the Lie derivative transforms as a tensor.

Consider a vector field Ka that generates a coordinate transformation x′a = xa+ δxa =
xa + ϵKa. Show that

g′ab =
∂xc

∂x′a
∂xd

∂x′b
gcd,

remains invariant under this transformation if Lxgab = 0. Show that this condition is
equivalent to ∇aKb +∇bKa = 0 for a metric compatible connection ∇a.

A vector field satisfying this property is known as a ‘Killing vector’, and generates an
infinitesimal symmetry of the geometry defined by the metric gab. Show that the inner
product Kbẋ

b is conserved along geodesics.



10. For (contravariant) vectors, the Riemann curvature tensor is defined as

[∇c,∇d] v
a = (∇c∇d −∇d∇c) v

a = Ra
bcdv

b. (7)

Considering the left-hand side of this expression, show explicitly that

Ra
bcd = ∂cΓ

a
db − ∂dΓ

a
cb + Γa

ceΓ
e
db − Γa

deΓ
e
cb.

By evaluating Ra
bcd in local inertial coordinates, or otherwise, show that for a metric

compatible and torsion free connection Rabcd = Rcdab = −Rbacd = −Rabdc and Ra[bcd] =
Rabcd +Racdb +Radbc = 0. Why is it sufficient to use local inertial coordinates to prove
these identities?

For a metric compatible and torsion free connection, the Riemann tensor also satisfies

Rab[cd;e] = Rabcd;e +Rabde;c +Rabec;d = 0.

How many independent components does the Riemann tensor have in n dimensions?
You should find that it only has one independent component for n = 2. Prove that the
Riemann tensor must then take the form

Rabcd =
1

2
R(gacgbd − gadgbc),

where R is the Ricci scalar. Hence show that the Einstein tensor Gab = Rab − 1
2gabR

vanishes in two-dimensions.

11. Birkoff’s theorem tells us that the Schwarzschild metric

ds2 = −
(
1− rs

r

)
dt2 +

(
1− rs

r

)−1
dr2 + r2dθ2 + r2 sin2 θdϕ2, rs = 2GM (8)

is the unique spherically symmetric vacuum solution to the Einstein field equations in
the presence of a point mass M . What is the physical meaning of the coordinate time
t in this solution? By considering the geodesic equation (4), or otherwise, show that
you can always restrict attention to time-like geodesics lying in the equatorial plane,
θ = π/2.



Show that geodesics in the Schwarschild metric have two conserved quantities

E =
(
1− rs

r

)
ṫ and J = r2ϕ̇.

What symmetries do these correspond to? Then, considering a change of variables
u = 1/r, show that (

du

dϕ

)2

+ Veff(u) =
1

J2
(E2 − k2), (9)

where k = dτ/dλ and we have defined some effective potential

Veff(u) = u2(1− rsu)−
k2

J2
rsu. (10)

Give physical interpretations of each of the terms in (10). For both timelike and null
geodesics, sketch Veff as a function of radius r, finding any turning points, and give a
description of the type of orbit at different values of r. Finally, find expressions for E
and J in the case of a circular orbit, as well as the orbital frequency ω(r).

12. We define the impact parameter by

b =
J√

E2 − k2
.

We wish to consider when incoming geodesics will be captured by the black-hole.

i.) Show that a massless particle is captured by the black-hole if the impact
parameter is smaller than a certain critical value b < bc, and find an expression for the
capture cross-section σ = πb2c in terms of M .

ii.) Consider a massive particle that starts at r → ∞ with a non-relativistic
velocity v ≪ 1 as measured by a stationary observer. Explain why b = J/v+O(v), and
explain the physical significance of the impact parameter in this case (it may be helpful
to use a diagram). Find an expression for bc in the case of the massive particle, and
show that

σ =
16πG2M2

v2
.

13. Starting from (9), show that

u′′ + u =
3

2
rsu

2 +
rs
2J2

k2, u′ =
du

dϕ
.

i.) By considering perturbations u = u0 + δu, δu ≪ u0 around circular orbits,
find expressions for δu(ϕ) for timelike and null orbits. Using this, show that timelike
circular orbits may only exist for r > (3/2)rs, and that they are unstable for r < 3rs.
Similarly, show that null orbits are always unstable.

ii.) Mercury orbits the sun in an ellipse with semi-latus rectum of approximately
5.546 × 1010 m. Using your results from the previous part, calculate the perihelion
advance of Mercury. [Hint: Find the correction to the orbital period due to General
Relativity.]



Problem Set 3: Linearised Gravity

14. There is a class of metrics which admit coordinates such that

gab = ηab + ϕ nanb,

with na satisfying ηabnanb = 0, where ηab = ηab = diag(−1, 1, 1, 1) is the Minkowski
metric.

i.) By looking for an inverse metric of the form gab = ηab + ψ nanb, show both
that na is null with respect to the metric gab, and that ψ = −ϕ. [Hint: Taking the trace
may be useful here.]

ii.) Show that Γa
bcn

bnc = 0 and Γa
bcnan

b = 0. Use this to show that if na is
geodesic with respect to the Minkowski metric, naη

ab∂bnc = 0, then it is also geodesic
with respect to the curved metric gab, n

a∇anb = 0.

iii.) Consider the special case for which

ϕ =
2GM

r
, na =

(
1,
x

r
,
y

r
,
z

r

)
,

where r =
√
x2 + y2 + z2. Using the results of the previous part, show that na is

geodesic with respect to this metric. Show also that nadx
a = dx0 + dr. Finally, show

that the metric in question is actually the Schwarzschild solution (8). [Hint: Look for a
coordinate change of the form x0 = t+ ξ(r).]

Throughout the remainder of this problem set, we will be working within the weak
gravity limit, for which

gab = ηab + hab, gab = ηab − hab, |hab| ≪ 1, (11)

That is, the metric consists of a small perturbation on a Minkowski background.

15. In this question, we shall fix the constant c1 in Einstein’s field equations

Gab = Rab − 1

2
gabR = c1T

ab

where Gab is the Einstein tensor, Rab is the Ricci tensor, R the Ricci scalar, and T ab

the stress-energy tensor. Confirm that the covariant derivative of the left-hand side of
this expression vanishes. What physical condition does this express?

Find an expression for the geodesic equation (5) in the weak-gravity limit (11). By
comparing it with the Newtonian limit

d2r

dt2
= −∇Φ,

show that h00 = −2Φ.



Recalling the Riemann tensor (7), show that the Ricci tensor is given by

Rbd = Ra
bad =

1

2
(∂d∂

ahab + ∂b∂
ahda − ∂a∂

ahbd − ∂b∂dh) (12)

where h = haa. Show further that the coordinate gauge transformation hab 7→ hab +
∂aξb + ∂bξa leaves (12) unchanged. Adopting the harmonic gauge condition

∂ah̄ab = ∂a
(
hab −

1

2
ηabh

)
= 0,

show that
(∂a∂a)h̄bd = −2c1Tbd. (13)

Comparing the timelike component of (13) to the Newtonian limit ∇2Φ = 4πGρ, show
that c1 = 8πG. Restoring units, this becomes 8πG/c4, the familiar result.

16. We shall now consider vacuum solutions to the gravitational wave equation (13),
vis.:

(∂c∂c)h̄ab = 0.

We seek plane-wave solutions of the form h̄ab = χab exp[ikcx
c], for wavevector ka =

(ω,k) and a constant, symmetric tensor χab.

i.) Show that solutions of such form propagate at the speed of light.

ii.) Show that the wavevector ka is orthogonal to χab.

iii.) Write down the conditions for the metric perturbation to be purely spatial
and traceless; perturbations satisfying these conditions are said to be in the transverse-
traceless (TT) gauge. Show that this implies ∂ihij = 0.

iv.) Finally, write down the most general form of χab for a perturbation with
wavevector ka = (ω, 0, 0, ω).



17. With some algebra, one can show from (13) that the spatial components of the
metric perturbation h̄ij at some field event (ct, r) in response to a source event (cts, rs)
evolve according to the quadrupole formula

h̄ij =
2G

c4
Ïij
r
, Iij =

1

c2

∫
d3rs r

i
sr

j
s T

00(ts, rs), (14)

where we have restored units for the sake of clarity. Note that the time derivatives are
taken with respect to the retarded time ts = t− r/c of the source event. One can also
show that the gravitational luminosity of the source is given by

LGW =
G

5c5
...
J ij

...
J

ij
, Jij = Iij −

1

3
δijδ

mnImn. (15)

Hence, given a particular (time-dependent) distribution of matter T 00, we can find
the local perturbation away from the Minkowski metric, and the resultant observed
gravitational luminosity. Indeed, (15) was useful in inferring the properties of the black
holes in the famous gravitational wave observation GW150914 by LIGO/Virgo.

In this question, we consider a black hole binary system merger, wherein two black-
holes of masses m1 and m2 orbiting at r1 and r2 relative to the origin gradually spiral in
towards one-another. We shall assume that both black holes remain on circular orbits
during the merger.

i.) Assuming that the orbital motion of the bodies can be confined to the equa-
torial (θ = π/2) plane, write down an expression for the time dependent mass-density
of the bodies in terms of m1, m2, r1, r2 and relevant spatial coordinates. Using this,
show that

Ixx = µr2 cos2 ϕ, Iyy = µr2 sin2 ϕ, Ixy = Iyx = µr2 sinϕ cosϕ,

where ϕ is the angular coordinate in the orbital plane, and µ = m1m2/(m1+m2) is the
reduced mass of the system.

ii.) Assuming that ϕ = ωt, give an expression for the orbital frequency ω in terms
of r and other constants. Using the quadrupole formula (15), show that the gravitational
luminosity of the binary is given by

LGW =
32

5

G4

c5
m2

1m
2
2(m1 +m2)

r5
,

where r is the radius of motion of the centre of mass. What ‘dodgy’ assumption has
been made in this derivation? [Hint: your results of question 11 in the previous problem
set may be useful here.]

iii.) Using the virial theorem, or otherwise, find an expression for the total energy
of the binary in terms of r and other constants.

iv.) Hence, for a given initial radius r0, show that the time taken for the black
holes to merge is given by

tmerge =
5

256

c5

G3

r40
m1m2(m1 +m2)

.

Does this expression scale how you would expect? Find the time taken for two black
holes with equal masses m1 = m2 = 60M⊙ initially located at one astronomical unit
from one another. Is your answer reasonable?



18. When two black holes of masses m1 and m2 collide to form a single large black
hole of mass M , the total area of the horizon must increase.

By considering radial, null geodesics in Scwharzschild spacetime (8), justify this state-
ment by invoking causality. [Hint: Think about light-cones; how are they orientated for
r < rs? ] Then, find an expression for an upper bound on the total energy that can be
released during the merger. Find a value for this upper bound for m1 = m2 = 60M⊙,
and confirm that this is larger than the total energy emitted due to gravitational waves
during the binary merger studied in question 17.

19. Consider two point masses m located at (ℓ/2, 0, 0) and (−ℓ/2, 0, 0) respectively
that are constrained to move along the x-axis. These are impinged upon by a grav-
itational wave travelling along ẑ, with metric perturbation satisfying hxx = −hyy =
Axx cos(kz−ωt). Find an expression for the proper distance of each of the masses from
the origin as a function of time, to first order in the metric perturbation. Using (15),
show that the time-averaged gravitational luminosity of the particle response is given
by

⟨LGW⟩t =
G

60c5
m2ω6ℓ4A2

xx.

The energy flux due to gravitational radiation is given by

F i = − c4

32πG
(∂ih̄

ab∂th̄ab).

The cross-section σGW for gravitational interaction is defined to be the ratio of the
average luminosity to the average incoming flux. Why is this a good definition of the
cross-section? Show that

σGW =
2π

15
r2s

(
ωℓ

c

)4

, rs =
2Gm

c2
.

Give a physical interpretation of the factor (ωℓ/c). Evaluate this numerically for m =
10 kg, ℓ = 10 m and ω = 20 rad s−1 and compare this with the typical weak interaction
cross section of 10−48 m2. Hence justify the statement: Gravity is the weakest force.



Problem Set 4: Cosmology

20. The Friedmann-Robertson-Walker (FRW) metric

ds2 = −dt2 + a(t)2
[

dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

]
, (16)

is a solution to Einstein’s field equations over a three-dimensional manifold of constant
curvature.

i.) What key assumptions about the nature of our universe are used in the deriva-
tion of (16)? Give physical interpretations of the coordinate t, the function a(t) and
the constant k.

ii.) Consider two observers located at some fixed comoving distance ℓ in flat
spacetime. Suppose that one observer emits a photon of wavelength λ at time t, which
is observed by a second observer as λ0 at time t0. Show that the cosmological redshift
factor z can be written as

z =
λ0
λ

− 1,

and find an expression for z in terms of a, t and t0.

iii.) Find expressions for the Hubble constant H0 and the deceleration parameter
q0 in the expansion

a(t)

a(t0)
= 1−H0(t− t0)−

1

2
q0H

2
0 (t− t0)

2 + . . . ,

Then, show that for small z the comoving distance ℓ can be expressed as

ℓ =
1

H0

[
z − 1

2
z2(1 + q0) + . . .

]
.

21. Consider an isotropic metric of the form

ds2 = −dt2 + a(t)2γijdx
idxj .

Why are there only four non-zero components of the Ricci tensor Rab? Show explicitly
that

R00 = −3
ä

a
, Rij = (äa+ 2ȧ2 + 2k)γij ,

in the case of the FRW metric (16). Here, the dot denotes differentiation with respect
to the coordinate time t. Write down the stress-energy tensor for a perfect fluid with
no overall velocity. Hence, show that Einstein’s field equations in the presence of a
cosmological constant Λ

Gab = 8πGTab − Λgab,

reduce to the Friedmann equations:

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
, (17)

Ḣ +H2 =
ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (18)



22. By considering (17) and (18), show that the mass density ρ satisfies the continuity
equation:

ρ̇+ 3
ȧ

a
(ρ+ p) = 0.

Show that this equation is also a consequence of stress-energy conservation. By adopting
the equation of state for a polytropic fluid p = wρ, find how the density depends on
the scale factor for general w. Consider the cases of pressureless matter (w = 0),
radiation (w = 1/3) and vacuum energy (w = −1), and give physical explanations for
the dependence of each on the scale factor.

We define the critical density ρc to be the density for which k = 0. Find an expression
for ρc in terms of the Hubble parameter H. Show that the first Friedmann equation
(17) can be written as(

H

H0

)2

=

[
Ωγ

(a0
a

)4
+Ωm

(a0
a

)3
+Ωk

(a0
a

)2
+ΩΛ

]
, (19)

where a0 = a(t0) is the scale factor at the current time. Give expressions for the density
ratios Ωγ , Ωm, Ωk and ΩΛ. Lastly, show that the second Freidmann equation (18)
evaluated at the current time can be written as

q0 =
1

2

∑
i

(1 + 3wi)Ωi.

In a universe consisting of only vacuum energy, is the expansion of the universe accel-
erating or decelerating?

23. By introducing the conformal time dη = dt/a, show that the FRW metric (16)
for k = 0 can be written as

ds2 = a(t)2
(
−dη2 + dx2 + dy2 + dz2

)
.

The metric is said to be conformally flat on some subset of the overall space. Given
that a2 > 0, what is the condition for two events to be connected by a null geodesic in
FRW spacetime?

Consider a universe containing pressureless matter and radiation. Show that such a
cosmological model has a past, but not a future, horizon. If a(t0) = 1, show that the
conformal time at present is given by

η0 =

∫ t0

0
dη = 2

√
8πG

3ρm

(√
1 + aeq −

√
aeq

)
,

and give an expression for aeq. What is it’s physical interpretation?



24. Consider a generalised Minkowski space:

ds2 = ηabdξ
adξb = −dξ20 +

n∑
i=1

dξ2i .

de-Sitter spacetime is the maximally symmetric sub-manifold described by the con-
straint that

−ξ20 +
n∑

i=1

ξ2i = α2. (20)

The Riemann tensor for such a space is given by

Rabcd =
1

α2
(gacgbd − gadgbc).

By considering Einstein’s field equations in a vacuum with a non-zero cosmological
constant Λ, find a relationship between α and Λ in n dimensions.

Consider the parametrisation

ξ0 =
√
α2 − r2 sinh

(
t

α

)
, ξ1 =

√
α2 − r2 cosh

(
t

α

)
,

ξ2 = r cos θ, ξ3 = r sin θ cosϕ, ξ4 = r sin θ sinϕ.

Show that this satisfies the constraint (20), and that this gives rise to the interval

ds2 = −
(
1− Λ

3
r2
)
dt2 +

(
1− Λ

3
r2
)−1

dr2 + r2(dθ2 + sin2 θdϕ2),

for n = 4. An event horizon is a hypersurface in spacetime that can only be crossed
in one direction. Does this de-Sitter spacetime have such a horizon? Illustrate your
answer using light-cone diagrams, distinguishing between the cases of Λ > 0 and Λ < 0.

25. The angle ∆θ subtended by some object of size d is given by ∆θ = d/DA, where
DA is the angular distance of the object. By considering the components of the FRW
metric (16), find an expression for DA in terms of the radial coordinate distance to the
object and the redshift z.

The luminosity distance DL is defined such that the flux F of a body of luminosity L are
related by F = L/(4πDL)

2, and is related to the angular distance by DL = (1+ z)2DA.
Show that the flux per unit area B of a body of size d and luminosity L is given by

B =
L

π2d2
1

(1 + z)4
.

Why is it so hard to observe old stars and galaxies?


