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Problem Set 1: Tensors, Derivatives and Spacetime

1. Explain why each equation below is ambiguous or inconsistent. Provide a possible
correct, version of each one.

i) o/ = Lgb

Solution: There are too many free indices. Possible correction: 2/ = L”’bmb.

. e _ 1b d
ii.) 2" = L° M

Solution: The free index has been mislabelled. Possible correction: /” = L .M < z?.

iil.) 2/* = L2x° + M€ z?

Solution: c has already been summed over, and so cannot be used as a free index.
Possible correction: 2/ = L% ¢ + M% z.

iv.) 69, = 5%.6°,

Solution: The free index has been mislabelled. Possible correction: 6%, = 9.0%.

v.) ¢ = (z%Aa)(y*Ba)

Solution: There is ambiguity to the summation, as the indices that are summed
over area repeated. Possible correction: ¢ = (z%A,)(y*By).

2. We define a (contravariant) vector v* as a quantity that transforms as

a b oz’
V" =A%, A = Hab
under a coordinate transformation {x} — {z’}. By demanding that the scalar ¢ = v%w,
is invariant under coordinate transformations, derive the transformation properties of
one-forms w,. These are often referred to as covariant vectors.



Solution: Requiring that scalar quantities are invariant under coordinate transfor-
mations yields:

o a/ /
O =0We =0 Wy = Aabvbw a-

c

Then, multiplying throughout by (A=),
(AN v we = (AHA% Wy = 690wy = vy

This means that

0x¢

- = cha

i.e. that one-forms (or covariant vectors) have the ‘inverse’ transformation law to
contravariant vectors.

3. The action of the covariant derivative on a vector v® can be written as
Va0® = 940° + T, ¢,

where I'", | are known as the Christoffel symbols or connection coefficients.

i.) What is the action of the covariant derivative V, on a scalar? Use this to
show how V, must act on a one-form w.

Solution: For a scalar ¢, we have that V,¢ = 0,¢. Thus:

aa(vbwb) = Va(vbwb)
vb(&lwb) + wb(ﬁavb) = Ub(Vawb) + wb(aavb + FbacUC)

00 (Do) = 02 (Vawp) + T, wpv”,
Re-labelling indices in the last term, I'°, wyv® = I'° ,w0?, it follows that

Vawb = 8awb — Fcabwc-

ii.) By demanding that the covariant derivative transforms as a (1, 1) tensor, show
that the Christoffel symbols must transform as

_ 0x® Ox° oz, dz® dz°  Ox’

b
b 98 OO pd .
ac 9zl 9x'* Ozd T ¢ 9x'¢ Oz'® OxcOxe




Solution: If we demand that V40’ transforms as a tensor, we have that

b
7 /b al'c axl d
Voo = 927 D Vv
b b ox¢ ax/b d d
e R (acu 4T v)
0r¢ 9 (0" 4\ e O . 0aC 0 Ovt 020 02",
0z'" 9x¢ \ Oxd “woxe  Qx'® Oxd x¢ Oz Qxd T °C
dzc 0% e 83:’61)6_ ozt 9z, Ve
0z’ Oxcoxe “woxe  Qx'® Jxd

Multiplying throughout by dx¢/0z'¢ and rearranging, the desired result follows.

iii.)

The Levi-civita connection is said to be metric compatible (Vaogp. = 0)

and torsion free (I'",, = I'“,). By considering cyclic permutations, show that these

constraints imply

1
% = §gad (OvGed + OcGbd — Odgpe) -

Solution: Using the condition of metric compatibility,

vagbc = Oa9bc — Fdabgdc
— abgca - decgda

= 0cgab — T ugba — T 4 9aa-
Taking the sum of the second and third lines minus the first, we have that
0= _aagbc + ab.gca + ac.gab - 2decgada

where we have also made free of the torsion free condition. Re-arranging the above
expression, contracting with g®¢ and relabelling indices, the desired result follows.
In case this was not obvious, the metric is always symmetric in its lower indices.

- Fdacgbd

- deang

4. Consider a static spacetime with metric

ds? = gaupdr®da’ = goodt? + 2goidtda’ + g;;daida?,

where the indices i and j refer to spatial components of the metric. Using the nor-
malisation condition u®u, = —1, find the four-velocity u® of a static observer in this

spacetime.



Consider a spatial hypersurface such that u,dz® = 0. Using this, show that the
interval on such a hypersurface is given by
i 1.5 goigoy
ds%n_l) = 7;da'de’  where i = g4 — gzooj.

Furthermore, by considering g.;g" = 8,, or otherwise, show that v/ = 9% g7 v = g
Interpret the meaning of these results with reference to the static observer u®.

Solution: For a static observer,

dx® . .o dt
¢ = = (¢t,0), t=—.
“ dr ( ) dr
Imposing the normalisation condition
a a, b 02 i2 a 1
—1 =u"uq = gapuu’ = goo(u’)” = goot” = u’= _900(170)-

Now, the interval can be written as
ds® = 900dt2 + 290¢dtdwi + gijda:id:cj

= g0o <dt + gmdﬂ) + (gij — 90L903> dz'da’.
goo goo

Now, the spatial hypersurface is defined by
0 = ugdz® = ggpubdz® = uo(goodt + gOidxi).

Using this in the above expression for the interval, the first term vanishes, and the
required result follows.

For spatial indices i, j, k and ¢, we have that

gzo — _7]913'

99" = 9rj g7 + grog™ = 6", gong” = 9097 + goog” =0 = o

Substituting the last of these expressions into the first,

ij 9090k ij j
9" <9aj - ) = 9" = 0,
goo
implying that
7 = g% g e = g6 = g7,

as required. <;; is the induced spatial metric experienced by static observers within
the spacetime defined by gq,, with 7;;dz'dz’ being the invariant interval on this
hypersurface. Defined in this way, 4% is the inverse of ;;.




5. Consider the metric for 3-dimensional Minkowski space (¢',7/, ¢'):

ds® = —dt”? + dr”* +r2dg”.

i.) We perform a coordinate transformation to a frame which is rotating with a
constant angular velocity €2:

t'=t, 1 =nr, (b/:gi)—l—wt.

What is the metric in the rotating frame (¢, 7, ¢)?

Solution: From the coordinate transformation given, d¢’ = d¢+wdt, so the metric
in the rotating frame is
ds? = —dt’? + dr'” + 12dg”
= —dt? 4+ dr? + r?(d¢? 4+ w?dt? + 2wdedt)
= —(1 — %) dt? 4 dr? + 2riwdedt + r2de?.

ii.) Consider a static observer in the rotating frame who is located at the position
(r,¢) = (R,0). How is the proper time of this observer related to the coordinate time
t? Explain the physical significance of this result.

Solution: Consider a static observer with proper time 7, so dr = d¢ = 0. Then,

dr
—dr? = —(1 - R?W?)dt* = T V1 — R2w2.
We see that the proper time of the static observer is related to the coordinate
time (in the non-rotating frame) by a time-dilation factor V1 —v?2, where v =
speed of circular orbit = Rw.

iii.) Compute the four-acceleration A% = u’Vyu® for this static observer with
four-velocity u®. Explain the physical significance of this result.



Solution: The four velocity of this stationary

. dt 1
=00 = L0 = s

dr
Then, using the definition of the four-acceleration,

a
ua:da:

- (1,0).

A% = uPVyu® = P (pu® + T%u¢) = u(ou® + I%u’) = T%(u’)?,

since the time derivative of u® vanishes. Then, by symmetry, the only non-zero
Christoffel symbol occurs for a = r, vis:

1 1 1
oo = 59”(309510 + 9og0d — 9agoo) = —igrdadgoo = —igrrargoo = —rw?.

This gives a four-acceleration of

Ruw?
A= ———-—-(0,1,0,0).
1 _ R2w2 ( ) ) ) )
This result makes physical sense. For Rw < 1, this simply reduces to the Newtonian
result A% = —Rw?(0,1,0,0). There is a divergence as Rw — 1 as the (massive)
observer would have to experience infinite acceleration to move at such a speed in
circular orbit.

iv.) Using your results from Question 4, compute the induced spatial metric ~;;
for observers rotating with angular velocity w in 3-dimensional Minkowski space. Using
this, compute the circumference of a circle with radius R as measured by these observers,
and explain the physical significance of the result.

Solution: Considering the components of ;;:

2 2
o =1 g T T —0
Yrr = Grr = L, Yoo = oo 900 1202 Yro = Y.

The circumference of a circle measured by these observers would be

0_/dy_/%d¢ _f%/%d¢_th
I R R R ey el Y, gy

This represents length contraction to the rotational motion; for Rw < 1, this reduces
to the normal ¢ = 27 R.




6. Let us start from a global inertial frame in Minkowski space (¢,z,y,2). Now
consider the transformation to a non-inertial frame (¢',2',y', 2") such that

1 1 1
(= (34 )siter). o=t y=f 2= (F+) comiat) -
g g g

for some constant g.

i.) For gt’ <« 1, show that this transformation corresponds to a uniformly accel-
erated reference frame in Newtonian mechanics.

Solution: We expand the frame transformations for gt’ < 1. The x and y coordi-
nates remain unchanged, while

1 1
t=(=+2 '+ (gt +... ) =t
(5+) (o + 50
L, Lo L o, 1
= (= 1+ —(gt R Y —gt”.
z <g+z>(+2(g)+ ) ; z+2g

Thus, we obtain the familiar Galilean transformation

1
t=t, z=2', y=19, z:z’+§gtl2,
i.e. all of the coordinates are unchanged except via a shift along the relative direction

of motion of the two frames.

ii.) Plot the trajectory of the point 2z’ = 0 in the inertial frame.

Solution: Without loss of generality, we set x = y = 0. Then,
1 1 1
t = —sinh(gt'), z= —cosh(gt')— - = (14+g2)*—(gt)*=1.
g g g

This means that the worldline of the relevant trajectory in the inertial frame is hy-
perbolic. The plot should feature intercepts at z = 0 and z = —2/g, and asymptotes
along t = +(2 + 1/g).




iii.) Show that a clock at rest at z’ = h runs fast compared to a clock at rest at
z' = 0 by the factor (1 + gh), as observed in the inertial frame. Use the equivalence
principle to interpret this result in terms of gravitational time dilation.

Solution: Let the coordinate times ¢; and ts correspond to 2z’ = 0 and 2/ = h
respectively. Then, for a time interval At in the non-inertial frame,

Aty (é + h) sinh(gAt')
Aty ésinh(gAt’)

=1+ gh.

Thus, we find that
Aty(2' = h) = (1 + gh)Aty (2 = 0),

meaning that a clock at rest at 2/ = h runs fast compared to a clock at rest at 2z’ = 0
by a factor of (1 4 gh) (in the inertial frame).

Now, the equivalence principle states that in the vicinity of some point on a manifold
under the presence of gravity that a falling observer may set up some local inertial
frame in which the metric is locally Minkowski. This is essentially a statement
that gravitational fields are indistinguishable from acceleration. Given that we are
considering a uniformly accelerated, non-inertial frame, we can interpret the results
in terms of gravitational time dilation by writing that

Rate Received = (1 — (®3 — ®1)) x Rate Emitted,

where ®; and $ are the local Newtonian gravitational potentials at two given
points. In this case, ® = (mgh)/m = gh, which gives the same result as above.

iv.) What is the line element ds? of a uniform gravitational field?

Solution: Using the total derivatives

dt = sinh(gt')d2" + (1 + g2') cosh(gt")dt’,
dz = cosh(gt")dz’ + (1 + g2') sinh(gt")dt’,

we note that
—dt? +dz? = |—(1+ gz')th'2 + dz'ﬂ [cosh2 (gt') — sinh? (9t)] = -1+ gz')2dt’2 + dz"2.
Using these results in the Minkowski metric, we thus have that

ds? = —(1 4 g2")2dt"” + da'” + dy* + d="°,

which confirms our previous statement that ® = gh.




7. The energy-momentum tensor of a perfect fluid in Minkowski space is given by
T = pn™ + (p + pJuu”,

where u® is the four-velocity of the fluid, and 7® = diag(—1,1,1,1). By considering an
observer at rest with respect to the motion of the fluid, explain the physical meaning
of p and p.

Solution: In the rest frame of the fluid u® = u” = (1,0). This means that 7% = p
and T% = p; i.e. p is the local mass (energy) density, while p is the pressure of the
fluid.

The equation of motion of a perfect fluid in a local inertial frame is
8, T = 0. (1)

The remainder of this question is devoted to deriving the equations of fluid mechanics
from this one expression. To begin, show that the tensor

hab = ab + Uan,

satisfies h“bub = 0, h“bhbC = h?, and h%, = 3, and therefore explain why h% is a
projector onto the three-dimensional hypersurfaces perpendicular to u*. What is the
meaning of the tensor hq, = 14.h%,? By projecting (1) parallel and perpendicular to the
four-velocity u®, show that

da(pu®) + pdau® = 0, (p+ p)(udp)u® + h%hp = 0. (2)

In the Newtonian limit, we approximate that u* < u°, p < p and |u|(dp/dt) < |Vp|.
What is the physical intuition behind each of these approximations? Using these, show
that (2) reduces to the familiar fluid equations:

dp

0
E—I—V-(pu):O, p(at—i-u'V)u:—Vp.

Solution: Consider the following identities on h%;:

hu® = u®(1 4 wu®) = 0,
h% R, = 6%6°, + 0% ulu. 4 6% uuy + uupuu. = 6%, + uu. = h°,,
ht, = 6% + uu, = 3.

The tensor h?, is thus clearly a projector onto the three-dimensional hypersurfaces
perpendicular to u®, as it is perpendicular to u®, multiple applications of the pro-
jector yields the identity (once you are in the projected space, the projector does
nothing), and the value of its trace is 3. The tensor Ay is then the induced metric
on the orthogonal hypersurface.




A useful identity for these calculations will be that
_ by _ b
0 = 0 (upu’) = 2upOyu’.
For the parallel projection:
0= ubBaT“b
= u®dup + upuu’ e (p + p) + (p + p)upda(uu®)

= u0yp — uu(p + p) + (p + p)upu’du”
= —u"0ap — pOau® — pdgu®,

which is the desired result. For the perpendicular projection,
0 = h%,0,T™
= 1% [1%0up + uu o (p + p) + (p + p)du(uu?)
= h%up + (p + p)hSudgul

= h%dup + (p + p)(0%upu® + uCupu®dyu’)
= h%0up + (p + p)udgu’.

A relabelling of indices yields the desired result.

In the Newtonian limit, we have the following approximations:
o u' < u”: Non-relativistic motion, speeds much less than the speed of light.
e p < p: Newtonian fluids are pressureless in their own rest frame.

e |u|(dp/0t) < |Vpl|: Static pressure gradients/sub-sonic limit. Pressure gradi-
ents to not change quickly in comparison to their magnitude.

For the continuity equation, we have that
do(pu®) + di(pu’) + pdsu’ ~ do(pu®) + di(pu’) = u’dop + d;(pu’),

which is the desired result. For the Euler equation, we consider the spatial a = @
component:

(p + p) (ubdy)u’ + hPOyp ~ p(ubdy)u’ + KOy,
since p < p. Now, ubdyu’ = dou’ + 1/ djut, and hdyp = d'p, and the result follows.

However, we have assumed properties about the induced metric hy,. Alternatively,
we may write

hP0yp = h*,0"p = h'odp + h';07p ~ h' ;07 p = 6,07 p + u'u;0p ~ &'p,

and the desired result also follows.




Problem Set 2: Geodesics, Curvature and Schwarzschild

8. Consider a curve z%(\) in a metric space g, parametrised by some (real) affine
parameter A. What is the condition for this curve to be time-like? By considering
variations of the functional

S:/dT:/d)\L(x,a’c,)\), =%

Y,
show that

(3)
a 1 a-b
a (gacl' ) = i(acgab)x €T, (4)

where we recall that the dot indicates differentiation with respect to the affine param-
eter \. This is the geodesic equation.

Solution: The condition for a timelike curve is that gabm'”‘j:b < 0. The variation in
the Lagrangian is given by

0L = L(x+ 0z, + 0%, \) — L(z, &, \) = gﬁ dx€ + gﬁ(ﬁ“

Then, the variation in the action is

CoTec . ec ] [ oL d [aLN] ...
s [an [Pser s 2sa] - fan 228 (0)) e

where we have assumed that any surface terms vanish. The path taken by along
the geodesic curve will thus satisfy the Euler-Lagrange equations:

d oLy oL
d\ \oic ) Oxc’

Now, extremising £ is equivalent to extremising £2, and so we instead consider
L = s.a b,

—gabl T

oL

a- oL .
oo = —(Oegan)i®i’, o = —2gaci”,

from which the result follows.

A geodesic curve is defined as one that parallel transports its own tangent vector. From
this, show that an alternative expression for the geodesic equation is

i+ T i3 = 0.

(5)
By direct calculation, show that (4) is equivalent to (5). Lastly, by considering the total
derivative of the Hamiltonian

or

H = aiaa: - L,

show that the Hamiltonian is conserved for the Lagrangian defined in (3). What is the
condition for it to be conserved for a general Lagrangian L7



Solution: Starting from the condition for parallel transport,
0 = i"Vyi® = i(9ya® + 1'%, i°) = @ + 'Y, 205°,
as required. Starting from (4),

d . 1 a - .. - 1 -
ﬁ(gacx“) - 5(8091117)35@371? = Jact" + (abgaC)xaxb o §8cgabl‘axb

. 1 a.
= gacl'a + 5(31)9“ + aagbc - acgab)fljal'b-

Relabelling a to d in the last expression,

1 - 1 d.
5(31;9% + DuGbe — Oegap)i®ib = i(abgdc + DaGbe — Oegap)i?a®

b;.d

1 b b
= §gacgae(abged + DaGeb — Degpa) i’ = galyyabad.

Thus,
Gac (ji“ + Fabdj:bj;d) =0 = &%4T%,d%° =0,

where we have relabelled indices in the last expression. Note that the equivalence of
(4) and (5) makes calculation of the Christoffel symbols relatively straightforward,
as they can simply be read off as the coefficient of #%3” when evaluating (4).

Consider the total derivative of the Hamiltonian H with respect to the affine pa-
rameter A:

d’l—[_d(f)[,,a) dﬁ_d((‘)ﬁ.a>_[8£ oL ., oL

7@

o \aet ) T T o \aae” ox oz’ T gza

Noting that

oc ., d (oL, d [oL) .,
9ze” T dax \gie” ax \ gz ) *

and that £ satisfies the Euler-Lagrange equations, it follows that

am_ ot
dx  oN

Thus, the Hamiltonian is conserved if £ does not depend explicitly on A. This is
true for the case of £ = —gqa%2’. It is also the case that H = L for this Lagrangian,
meaning that £ is also conserved along geodesics. This fact will prove useful when
analysing geodesic motion.




9. The Lie derivative of a (2,0) tensor with respect to a vector field z® is given by
LTy = (2°0:)Tup + (0a2)Tep + (0px°) The (6)

Show that you can replace any 9, with any covariant derivative V, in this expression,
and so argue that the Lie derivative transforms as a tensor.

Solution: Replacing 0, with V, throughout the definition of the total derivative,
we have

LTy = (2°Ve)Tap + (Vaz) Ty + (Vpr©) Toe
= 2 (acTab ol Ty — chbTad) + (B + T°,,2%) Tup + (9p2° + T,2%) Tae
= (2°00) Tup + (002) Ty + (852°) Tie
— 2T Ty + 7€, Ty — 2Ty Tog + 2T, Tie
= (2°0)Tup + (8a®) Tty + (D7) T,

where we have assumed a torsion free connection, and relabelled contracted indices.
The Lie derivative must this transform as a tensor expression.

Consider a vector field K that generates a coordinate transformation z/* = %+ §x® =
% + eK®. Show that
,  0x¢ Ozt
Yab = ngcd,
remains invariant under this transformation if £,g.,, = 0. Show that this condition is
equivalent to VK + VK, = 0 for a metric compatible connection V,.

Solution: Using the transformation, we note that

= 0wl = 5) = 5%, — 80 + O((32°))
oz 0

o = w(w'd — §2%) = 6% — 9,02 + O((524)?)

Iup(@") = Gav () + Oegap 62° + O((62°)%).

Using these in the transformation condition for the metric:
, dx¢ Ox?

Yab — ngcd

0= [(Kcac)gab + (aaKc)gcb + (ach)gac] €
= »cha,b =0.

= g+ 02 Degi — (8% — 082" — 6,0,02°) gen

However, we have already shown than we can replace all partial derivatives by co-
variant derivatives in the definition of the lie derivative. Noting that KV .g. = 0
by the metricity condition, it follows that V, K, + VK, = 0 by lowering the indices
on K¢ with the metric.




This condition can also be derived by considering variations of the functional
S = / d\ gapi®i?,
Vis.:
58 = / d\ [(K(facga,b):t“as” + gap(K%2" 4+ #°K?)
= [r [ D)% + 0K + gun(0. K]
= / X L gapd i,

upon a relabelling of indices.

A vector field satisfying this property is known as a ‘Killing vector’, and generates an
infinitesimal symmetry of the geometry defined by the metric g,5. Show that the inner
product Kz is conserved along geodesics.

Solution: Consider the parallel transport of Kji® along some x(N):
PV (Kpi) = i°Ve(gapn K 2") = Ky (2°Vci’) 4+ i’2°V K, = 0,

where the first term is zero by the definition of the geodesic equation, and the second
is zero since it is a product of a symmetric and antisymmetric quantity. Thus,
we conclude that K,i? = constant along geodesics. For example, Schwarzschild
spacetime has two Killing vectors K = (1,0,0,0) and K¢ = (0,0,0,1) which
correspond to time invariance and rotational symmetry.

10. For (contravariant) vectors, the Riemann curvature tensor is defined as
Ve, Vgl v® = (VeVg — VgVe) v® = R 07 (7)
Considering the left-hand side of this expression, show explicitly that
Ryq = 0%y — 0l + T I — T 1

By evaluating R%, ; in local inertial coordinates, or otherwise, show that for a metric
compatible and torsion free connection R ., = R 4., = —Rbacd = —Rabde and Bypeq) =
Raved + Racdy + Raagve = 0. Why is it sufficient to use local inertial coordinates to prove
these identities?



Solution: Consider

VeV v = Ve (0gv® + T 0°)
= aCadva + aC(Fadbvb) + Faceadve - Fecdaeva + I‘\aceFedb’Ub - Fecdraebvb

= (T ") 4+ T2, 9qv° + T, I° ;0" + terms symmetric under ¢ < d.
Then:

(VVag—VaVe)v
= aC<F(Ldbva) + Fa(zeadve + Faceredbvb - ad(racbvb) - Fa{deacve - I—‘adeFecbvb
= [00% gy — 04T, + T T, — T, Ty 0,

as required.

In local inertial coordinates &%, gqp >~ 1qp and I' = 0, OI' # 0, meaning that in local
inertial coordinates,

1
Rade’£ = 6crabd - 8drabc = 577a6(acadged + aeaclgbc - aeacgbol - 8badgec)7

SO
1
Rabcd‘g - 5(8cabgad + 8aadgbc - 8aacgbd - 8badgac)-
From this expression it is clear that Rapedle = Redable = — Rbacdle = — Rabdele
and Rg[peq) ‘ £ = 0. We have thus proven all of the given identities in local inertial

coordinates. However, given that all of these expressions are tensorial, they must
hold regardless of the choice of frame, meaning that they must be valid in all frames,
rather than just local inertial coordinates.

For a metric compatible and torsion free connection, the Riemann tensor also satisfies
Rab[cd;e] = Rabcd;e + Rabde;c + Rabec;d =0.

How many independent components does the Riemann tensor have in n dimensions?
You should find that it only has one independent component for n = 2. Prove that the
Riemann tensor must then take the form

1
Roped = §R(gacgbd — GadYbe),

where R is the Ricci scalar. Hence show that the Einstein tensor Gy = Rgp — % Jap R
vanishes in two-dimensions.



Solution: R,p.q is symmetric under the exchange of ab and cd, giving rise to m(m+
1)/2 components, where m is the number of independent components in the ab or
cd subset. However, R,p.q is symmetric under the exchange of the indices a <> b,
¢ > d, implying that m = n(n — 1)/2. However, the first Bianchi identity R,pcq =
0 provides (Z) relationships between these components. This is because, in this
identity, all of the indices must be different, otherwise it reduces to the previous
symmetry and antistymmetry relations. Thus, we are choosing 4 indices out of a
possible n. Thus, the number of independent components N of the Riemann tensor
is given by

L (MY = Lz
N—Qm(m—i—l)’ - (4)-1271 (n”—1).

m:§n

It is clear that N = 1 for n = 2. This means that the Riemann tensor must be
completely determined by the Ricci scalar. The only possible form of the Riemann
tensor that satisfies all of the required symmetry properties is

Rabea = f(R)(9acbd — JadTbc),
where f(R) is some function of the Ricci scalar R. Then:
1
R = g"'g" f(R)(9acgba — Gaager) = f(R)((9%)* — g%) = 2f(R) = f(R) = SR,

giving the desired form of the Riemann tensor. Now,

1 1
Rab - Rcacb - gdCRdacb - iR(gdcgdcgab - gcbgac) - §gabR = Gab =0.

11. Birkoff’s theorem tells us that the Schwarzschild metric

T s\ 1

ds? = — (1 - —S) a? + (1 - —S) dr? + 12407 + r2sin® 0d¢?, o =2GM  (8)
r r

is the unique spherically symmetric vacuum solution to the Einstein field equations in

the presence of a point mass M. What is the physical meaning of the coordinate time

t in this solution? By considering the geodesic equation (4), or otherwise, show that

you can always restrict attention to time-like geodesics lying in the equatorial plane,

0 =m/2.

Solution: The coordinate time ¢ is the proper time measured by an observer at
rest, located at » — oo relative to the point mass M.




Consider the geodesic equation (4) for ¢ = 6:

d ) .
5(27'20) = 272 sin f cos 6 ¢
Letting 0 = 7/2, it is clear that 0 = constant/r2.  We can always choose our

coordinates such that § = § = 0, meaning that 6 = /2 throughout the trajectory.

Show that geodesics in the Schwarschild metric have two conserved quantities
E= (1_7”_5)75 and J = r2¢.
r

What symmetries do these correspond to? Then, considering a change of variables
u = 1/r, show that

du\? 1, 5 9
w) " Ver(u) = = (E” — &%), (9)
where k = d7/d\ and we have defined some effective potential
2 k?
Ver(u) = v (1 — rsu) — Jalst- (10)

Give physical interpretations of each of the terms in (10). For both timelike and null
geodesics, sketch Vog as a function of radius r, finding any turning points, and give a
description of the type of orbit at different values of r. Finally, find expressions for £
and J in the case of a circular orbit, as well as the orbital frequency w(r).

Solution: To show that Schwarzschild permits the two conserved quantities £ and
J, one can notice that (8) permits two Killing vectors (K° = (1,0,0,0) and K¢ =
(0,0,0,1)) and use the fact that g,, K®z? is conserved along geodesics. Alternatively,
one can consider the geodesic equation (4); for ¢ = 0, we have that

d .0 s\ :
d)\(gool‘) ,
while for ¢ = ¢, we have that
d . b 2 29
a(gwx )=0 = 7rsin“0¢=J,

with the result following for # = 7/2. These correspond to time invariance (imply-
ing energy conservation by Noether’s theorem) and rotational symmetry (implying
the conservation of angular momentum).




It is clear that the interval is conserved throughout the motion. Defining k as in
the question, we have that

. -1 . .
L=—k=— (1 — E) 2 + (1 — E) 72 + 1202 4+ 2 sin? 0>,
r T
Once again moving to ¢ = m/2 without loss of generality, we let t=0—rs/r)"'E
and ¢ = J/r?, and use

dr B J2 dr du

o r2de Tdg

P =

to derive (9). Physically, each of the terms in the effective potential represent

J? reJ? rek?
2 . S S
T Vea(r) = 2 B rd - r
~—~ —— ——

angular momentum barrier ~ GR correction  Newtonian gravitational potential

Finding the turning points of V.g, we have that:

OVerr 11 krs )
= =—-—=—|[14£4/1-
ou o= ro 3rs 3<J>

For timelike geodesics, k = 1, the two solutions for u correspond to the extrema
of elliptical orbits. For J = v/3r,, the two extrema combine, and we have a min-
imum stable circular orbit for » = 3rs,. Below this value of J, all orbits will be
bound/plunging orbits.

Vest
_________________________ p_l aliging
I\ scattering
- precessing
For null geodesics, k = 0, the extrema are r = 0 or r = 3ry/2. This means

that circular orbits can exist for null geodesics, but they only occur at an unstable
maximum. There are no bound orbits.




oV
=
V)

Finally, we consider timelike circular orbits, for which £ = 1, dr = df = 0. From
the metric, we have that

1= (1 - E)t'2+r2¢32.
T

Differentiating with respect to r:

_ Tsio 9 do | rs  |GM
0_—T—2t +2r¢° = w(r)—a— 23—\ 3

Using the definition of J,
) _ ro -1
J=r2p=rtw = J= (1 — E) r?wE.
r

Substituting this into the orbit equation (9) for du/d¢ = 0, we find that

(1 —rs/r) g VGMr

1= 3rg/2r V1 —=3rg/2r

We see that these diverge at r = 3r,/2, corresponding to the fact that there are no
stable circular orbits exist below this value.

12. We define the impact parameter by
b= —.

B2 _ |2
We wish to consider when incoming geodesics will be captured by the black-hole.

i.) Show that a massless particle is captured by the black-hole if the impact
parameter is smaller than a certain critical value b < b., and find an expression for the
capture cross-section o = 7b? in terms of M.



Solution: From (9) with k£ = 0, the distance of closest approach will occur at some
value of r such that » = 0, so

E? 1 Ts r3
=12 = =
J? 7"2( r—Ts

Now, for the photon to be captured by the black hole, r in this expression must
correspond to the minimum circular orbit for a photon. We found this in the
previous question to be ryi, = 375/2, meaning that

’ 27 27
4 =" = o=""nrl=21G*M".

4

b2 =

c

T —7Tg

T"="min

ii.) Consider a massive particle that starts at r — oo with a non-relativistic
velocity v < 1 as measured by a stationary observer. Explain why b = J/v+ O(v), and
explain the physical significance of the impact parameter in this case (it may be helpful
to use a diagram). Find an expression for b, in the case of the massive particle, and

show that
_ 16nG*M?

g 2

v

Solution: We assume that the particle is initially stationary at — oo apart from
vanishingly small velocity v < 1. As the particle is initially in motion relative to
the centre of the system, it must have some non-zero angular momentum J = yvb,
where v is the usual Lorentz gamma factor. Then we have that

p= L = 1(1 — )2 ~ % + O(v),

as required. b is thus the distance between the parallel lines of its own initial/final
trajectory, and that passing through the scattering centre (offset).




As the particle is initially at rest at » — oo, £ = 1 since the proper time on the
worldline of the particle and that of the stationary (coordinate) observer are the
same (dr/dr = 1). Given that k = 1 for a massive particle, we can rewrite our orbit
equation as

. J? ry J%r ) re\3 (r?  J*r  J?
T e (R R
r r r r: orirs  r2

This can be factorised as

.9 rs\3 [T i roor_ J?
== —_ - ——— ), TE=-5
r T T T T 2r;

It is clear from this that there are turning points with 7 = 0, which only exist for

JQ

42
—J220 = J2>2r,.

1

This is the critical value of the angular momentum at which the object will be
captured. This means that b. = 2rs/v, and the result for the capture cross-section
follows.

13. Starting from (9), show that

,  du

2 [ —
k=, u—d¢.

3 r
u +u= §T5u2 + 2j2

i.) By considering perturbations u = wug + du, du < g around circular orbits,
find expressions for du(¢) for timelike and null orbits. Using this, show that timelike
circular orbits may only exist for » > (3/2)rs, and that they are unstable for r < 3rs.
Similarly, show that null orbits are always unstable.



Solution: Denoting v’ = du/d¢, we differentiate (9) with respect to ¢, and divide
throughout by «’, such that:

3
u 4 u= §rsu2 + 572

We first consider timelike orbits (k = 1). If ug corresponds to a circular orbit,
ug = 0, and so

r
ug = §r5u3 + ﬁ

Now, the innermost circular orbit will occur for J — oo, corresponding to ugn“ =

2/(3rs) < 19 = 3rs/2. This was the reason for the divergences in the expressions
for E and J found in the last part of question 11. Then, letting u = ug + du, we
have that

o + du = grsug(%u) = 3rsugou.

This has solution:

ou(p) = ¢1 cos(ap) + cosin(ag), o =+/1— 3rsuy,

for constants ¢; and cp. Clearly, orbits are unstable for ug > 1/(3rs) < 9 < 3rs.

For null geodesics (k = 0),

Then, as before,

o’ + du = 3r, <32> ou = ou’ —ou=0.

-
This has solution
du(¢) = ¢1 sinh ¢ + co cosh ¢,

meaning that there are no stable deviations away from a circular orbit for null
geodesics; these will either be plunging or unbound orbits.

ii.) Mercury orbits the sun in an ellipse with semi-latus rectum of approximately
5.546 x 10'° m. Using your results from the previous part, calculate the perihelion
advance of Mercury. [Hint: Find the correction to the orbital period due to General
Relativity.]



Solution: In general, the calculation of the perihelion shift of an orbit must take
into account the eccentricity of the orbit. However, in turns out that one obtains
the same result by considering perturbations around a circular orbit instead. We
thus have that

T, = 2T 2n o (14 2ru
==~ 27 — )
¢ We V1= 37“SU() 2 s
Thus,
6mrGM
A¢ = 37TTSU0 = W,

where we have restored units in the last expression. For Mercury, we find that
A¢ ~ 5 x 1077, which is approximately 42.98 seconds of arc per century.




Problem Set 3: Linearised Gravity
14. There is a class of metrics which admit coordinates such that

Gab = Nab + ¢ NgNy,

with ng satisfying n%®ngn, = 0, where 7, = 7% = diag(—1,1,1,1) is the Minkowski
metric.
i.) By looking for an inverse metric of the form g% = 1% + ¢ n®n®, show both

that n, is null with respect to the metric gqp, and that ¢ = —¢. [Hint: Taking the trace
may be useful here.]

Solution: By definition, we have that

gabgbc _ (5(1,{: _ (nab + ¢nanb) (nbc + wnbnc)
= 5% + onPngny + Yngyn’n® + gyhngnyn®nt.

Assuming that we are working within a spacetime of dimension d. Then, taking the
trace throughout,

d=d+¢p(nan®)® = n'ng =g namy =0,

meaning that n, is also null with respect to the metric g,;. Furthermore, this means
that the raising and lowering of the indices on n, can be done with either g, or
Nab- This means that

on*nany + Ynapntn® = (¢ + P)nent =0 = h = —¢.

ii.) Show that Fabcnbnc = 0 and Fabcnanb = (0. Use this to show that if n, is
geodesic with respect to the Minkowski metric, n,n%dyn. = 0, then it is also geodesic
with respect to the curved metric gqp, n*Vny = 0.



Solution: Using the definition of the Christoffel symbols and of the metric, we have
that

b b, c, ad

1
[ n'n® = annyg [Ob9de + Ocgbd — Oague)
1
= §nbncgad [Op(Ppnane) + Oc(Pprynag) — Oa(pnpne)]

= %nbncgad [ona(Opne) + dng(Oensp)],

where we have used the null condition on n,. Now, we note that
O (nbnb) = 2(dynp)n’ = 0,

meaning that n, contracted into itself vanishes, even if there is a partial derivative
acting on one of them. From this, it follows that F“bcnbnc = 0, and similarly for
%, .nen® = 0. This means that

n’Vyng = n® (Opng — T pne) = nOyng — Fcabnbnc =0,

meaning that n, is also geodesic with respect to the curved metric.

iii.) Consider the special case for which

¢:2GM’ na=<1,£,g f>,

)
r

where r = /22 +y2 + 22. Using the results of the previous part, show that n, is
geodesic with respect to this metric. Show also that n,dz® = dz® + dr. Finally, show
that the metric in question is actually the Schwarzschild solution (8). [Hint: Look for a
coordinate change of the form x° =t + £(r).]



Solution: We have shown that if n, is geodesic with respect to the Minkowski
metric, then it is also geodesic with respect to g,,. Then,

T . T; x; 1 1 .
nan®yne = —nodone + nidike = —9;~L = N —2(:1:]8]-7“)) =0,
roor rr or

as required. Then, we also have that.
ngdz® = nodz® + %dxl = dz® + dr.
Define df2(,) as the differential solid angle in two-dimensions. Then:
gapdada’ = —(da®)? + dr? + r2dQ,) + ¢((da®)? + 2dzdr + dr?).
Looking for a coordinate change of the form dz° = dt + &dr,

gapdada® = —dt* — £dr? — 2¢dtdr + dr® 4+ r?dQ,
+ p(dt? + £2dr? 4 2(¢")dtdr + 2(dt + Edr)dr + dr?)
= —(1 — ¢)dt* + (1 + ¢(1 4 &)? — £2)dr?
+2(6(1 +€) = E)dtdr + r2dQy,.
Demanding that the metric be diagonal gives £ = ¢/(1 — ¢), such that

1
2 2y _ _
(1401467~ ) =1+¢= 1,
meaning that

ds® = —(1 = ¢)dt* + (1 — ¢) " dr? + 12dQ},),

which is the Schwarzschild solution (8) for ¢ = 2GM /r.

Throughout the remainder of this problem set, we will be working within the weak
gravity limit, for which

Gab = Tad + haba gab = 77ab - haba |hab’ < 17 (11)

That is, the metric consists of a small perturbation on a Minkowski background.

15. In this question, we shall fix the constant ¢; in Einstein’s field equations

1
Gab — Rab - abR: c Tab
29 1
where G is the Einstein tensor, R* is the Ricci tensor, R the Ricci scalar, and 7%
the stress-energy tensor. Confirm that the covariant derivative of the left-hand side of
this expression vanishes. What physical condition does this express?



Solution: Starting from the Bianchi identity
Rapedse + Ravde;e + Rapee;a = 0,
we raise a and contract it with ¢, such that
Rpdse + Rpge.c — Rbe;a = 0,

where we have made use of the antisymmetry in the first two indices in the last
term. Again, raise b and contract it with d, making use of the symmetries of Rapcq:

R§€ - Rce;e - Rde;d - R;E‘ - 2Rce;c - (5CeR - 2RC€);e =0.
Now, the metricity condition implies that gde;c = 0, such that

g% (5 R~ 2R°,), = (9" = R—2R"") =0,

;C

Relabelling indices, this becomes

1
<Rab - 2g“bR> =0.

)

This means that the covariant derivative of the left-hand side of the field equations
vanishes. This is a requirement for energy conservation.

Find an expression for the geodesic equation (5) in the weak-gravity limit (11). By
comparing it with the Newtonian limit

show that hgg = —2®.



Solution: In the weak-gravity limit (11), we assume that 2% ~ 3% > i, such that
we can write the geodesic equation (5) as

$0 + F(LOO(I-,O)Q — @ + F(LOO =0.
Then,

1

1 1
Faoo = —§gacacgoo = —§Uacacgoo = —5 2900

where the last equality follows from the fact that we assume that the metric is slowly

varying in time. For timelike geodesics,

34 =

d2ze dt d /dt dx® d2ze
= () = e+ Ol

dr2  drdt \dr dt ) de?
Putting this together, we have that

A%z 1
——— = —0ahoo-

a2~ 27w
Comparison of the spatial component of this with the Newtonian limit clearly yields
hoo = —-20.

Recalling the Riemann tensor (7), show that the Ricci tensor is given by
1
Rpg = Rabad = 5 (8d8“hab + Op0%hgy — 0,0%hpg — 6b8dh) (12)

where h = h®,. Show further that the coordinate gauge transformation hqp — hap +
04&p + Op&, leaves (12) unchanged. Adopting the harmonic gauge condition

- 1
8ahab =0" (hab - énabh) = 07

show that -
(8“8a)hbd = —QClde. (13)

Comparing the timelike component of (13) to the Newtonian limit V2® = 47G)p, show
that ¢; = 87G. Restoring units, this becomes 87G/c*, the familiar result.



Solution: Recalling the definition of the Christoffel symbols, it is easy to see that
1
%, = 577'“1 (Oohed + Ochbg — Oahue) + O(hly).

In the Riemann tensor, we ignore products of the Christoffel symbols, since these
are already of O(h2,). Then, it follows that

Rabcd - 8CI‘abd - 8dracb

1
= Qnae (OpOchde + 040chey — OcOehpg — 0qOphece) -

Contracting a with ¢, the desired result follows.

Under the coordinate gauge transformation, we have that

adaa(hab + aa,gb + 8b§a> + 8baa<h’da + adfa + 8a§d)

— 00a(hid + Op€a + 0a&p) — Op0a(h + 20°&,),
= Rpg + 0"0q04&p + 20" 0,0q&a + 0" 0q0p€q — 0“0a0p€q — 0“0q0ap — 20“0y04&as
= Rpq,

as required. It is helpful to re-write our expression for Rpg in terms of hgp, vis.:

1 1
Ryqg = % [3}; <3ahad — 28dh> + 04 (8ahab — 23bh> — aaa“hbd} ,
1 1 1 .
=3 {3‘1(917 <had - 277adh> + 00 (hab - 277abh> -0 8ahbd] ;
1

= B [Gaabﬁad + 8“8di_zab — 8“8ahbd} .
Similarly, the Ricci scalar becomes
bd 1 a 0b a nb a aabr 1 a
R =" Ryq = 5 |0°0"ha + 00" hap — 0" 0uh| = 0"6"hap — 50°0uh.

Thus, we can finally write the Einstein tensor as

1 1 _ — _ _
Gra = Rpq — Sl =5 [0%Dghap + 0“Ophga — 0*Oahba — MO0 hac) -

Adopting the harmonic gauge, this clearly reduces to Gpq = —%aaaaﬁbd, giving (13).
The timelike component of this equation is

- 1
(6aaa)h00 = 0%0, (hog + 2h> = —4(6“(%)@ =—-2c1p = ¢ =8nG,

upon comparison with the Newtonian limit. Here, we have used the fact that 7;; ~ 0
in the weak-gravity limit to write that

1
hi‘ ~(0) = hl = *ni'h = h = *hOO + h” = 2h00.
J J 9 J




16. We shall now consider vacuum solutions to the gravitational wave equation (13),
vis.:

(8°0.)hap = 0.

We seek plane-wave solutions of the form hqp = Xab explik.x€], for wavevector k% =
(w,k) and a constant, symmetric tensor ygp.

i.) Show that solutions of such form propagate at the speed of light.

Solution: Substituting the plane wave solution into the wave equation, we find
that

—kekhgy =0 = kk°=0.

This means that the solutions propagate along null geodesics (at the speed of light).

ii.) Show that the wavevector k% is orthogonal to xgp.

Solution: The harmonic gauge condition implies that
aaﬁab = i/{axabeik”xc =0 = k’axab = 0.

This means that the wavevector is orthogonal to Y., up to second order in the
metric perturbation.

iii.) Write down the conditions for the metric perturbation to be purely spatial
and traceless; perturbations satisfying these conditions are said to be in the transverse-
traceless (TT) gauge. Show that this implies 0'h;; = 0.

Solution: For the perturbation to be purely spatial, we require that x,0 = x0s = 0,
as this eliminates all mixed components. The condition for it to be traceless is
X%, = 0. Then, the harmonic gauge condition tell us that

_ 1 . 1 '
Ohgp = O° <h0b — 2170bh) + 0 (hib — 277ibh> =0'hij =0

since h = 0 by the condition x?, = 0.

iv.) Finally, write down the most general form of x, for a perturbation with
wavevector k% = (w,0,0,w).



Solution: The combination of k* = (w,0,0,w) and the condition k%4, = 0 tells
us that x,, = 0. Then, given that y,; is both traceless and symmetric, the most
general form is

0 O 0 0

Yoy = 0 x11 xi2 O
“ 0 x12 —xu1 O
0O O 0 0

This means that the wave is entirely characterised by the components y11 and yio.




17. With some algebra, one can show from (13) that the spatial components of the
metric perturbation h;; at some field event (ct,r) in response to a source event (cts,rs)
evolve according to the quadrupole formula

B = 26 L 1

o= 20 gy= g [ @ 1), 1)

At or’ c2

where we have restored units for the sake of clarity. Note that the time derivatives are
taken with respect to the retarded time ts = ¢ — r/c of the source event. One can also
show that the gravitational luminosity of the source is given by

R 1
Low = c5 Jiy ", Jiy = Ly = 3650 L. (15)

Hence, given a particular (time-dependent) distribution of matter 79, we can find
the local perturbation away from the Minkowski metric, and the resultant observed
gravitational luminosity. Indeed, (15) was useful in inferring the properties of the black
holes in the famous gravitational wave observation GW150914 by LIGO/Virgo.

In this question, we consider a black hole binary system merger, wherein two black-
holes of masses my and mq orbiting at r; and ro relative to the origin gradually spiral in
towards one-another. We shall assume that both black holes remain on circular orbits
during the merger.

i.) Assuming that the orbital motion of the bodies can be confined to the equa-
torial (§ = 7/2) plane, write down an expression for the time dependent mass-density
of the bodies in terms of mi, mg, r1, 79 and relevant spatial coordinates. Using this,
show that

I = m*2 cos® ¢, Iy = /M“z sin? ¢, Iy = Iy = ,u,r2 sin ¢ cos ¢,

where ¢ is the angular coordinate in the orbital plane, and g = mymsa/(mi +ms) is the
reduced mass of the system.

Solution: The mass density can be expressed as
p=108(z) [mid(x — ricos@)d(y — risin @) + mad(x + racos @) + §(y + rosin @)].
Moving to centre of mass coordinates, we have that
[l H myimsa

r = r, T2= r, = )
m1 meo mi1 + ms

meaning that we can calculate the non-vanishing moments of the quadrupole tensor
Iy, = /d‘jr pz? = ml’r'% cos® ¢ + mg'r% cos? ¢ = pr? cos ¢,

and similarly for I, I, and I,.




ii.) Assuming that ¢ = wt, give an expression for the orbital frequency w in terms
of r and other constants. Using the quadrupole formula (15), show that the gravitational
luminosity of the binary is given by

32 G* mIm3(my + mo)
Low = ——F )
5 ¢b o

where 7 is the radius of motion of the centre of mass. What ‘dodgy’ assumption has
been made in this derivation? [Hint: your results of question 11 in the previous problem
set may be useful here.]

Solution: In question 11, we showed that the frequency for a circular orbit around
a point-mass is given by

o GM - G(m1 + mg)
O \ar T e

It is then straightforward to calculate the trace-reversed quadrupole tensor from the
quadrupole moments listed above:

1 1 cos 2wt +1/3 sin 2wt 0
Jij = Ij — §5Z’JJ/€]€ = 5/”“2 sin 2wt —cos2wt +1/3 0/
0 0 —-2/3

We take time derivatives of this expression assuming that the frequency w(t) is a
slow function of time; this is the ‘dodgy’ assumption referred to in the question, as
we will see that dr/dt diverges as r — 0, as one would expect. This makes this
classical model of the merger not a very good approximation to the real system, as
the majority of the gravitational wave radiation is released during times for which
r < ro. In any case, taking the aforementioned time derivatives yields

sin 2wt  —cos2wt 0
Jij = 4pr*wd | —cos2wt —sin2wt 0],
0 0 0

such that
1
JU JY =16p%r*W5Tr | 0 = 3202 4WP.
0

S = O
o O O

Then, the gravitational luminosity of the binary is given by (15):

Law = gg;ﬂr‘lwﬁ _ 32G mimj(m1 + ma)

5 ¢? 5 ¢ 7o

iii.) Using the virial theorem, or otherwise, find an expression for the total energy
of the binary in terms of r» and other constants.



Solution: The virial theorem (2 (K) = n (V) for V(r) = ar™) tells us that the total
energy of the binary is given by

Eiot = (K) + (V) =

iv.) Hence, for a given initial radius ro, show that the time taken for the black
holes to merge is given by
5 ¢ ré
256 G3 mlmg(ml + 7n2) '

tmerge =

Does this expression scale how you would expect? Find the time taken for two black
holes with equal masses m; = mga = 60M, initially located at one astronomical unit
from one another. Is your answer reasonable?

Solution: By energy conservation, the energy lost due to gravitational waves de-
creases the total energy of the binary. Thus,

= —Gmima—
dt 9 T2 g4

dt 5 rd

d <1> dr 64 G3 mlmg(ml—i-mg)
= Lcw = .

.
Given the initial condition r(0) = r¢, this can be solved for

< 3
I Té’ — ?%mlmg(ml + ma)t.
Letting » = 0, we find the desired expression for tyerge. This scales as one would
expect; the greater the initial separation, the larger the time until the merger, but
the greater the mass, the shower the time as more energy is lost due to gravitational
radiation. For the masses and initial separation given, we find that ?,,erge ~ 1019 s.
This answer is not particularly reasonable, as it is approximately 50 times the age
of the universe, even though we have observed black hole mergers in finite time.

18. When two black holes of masses m1 and mo collide to form a single large black
hole of mass M, the total area of the horizon must increase.

By considering radial, null geodesics in Scwharzschild spacetime (8), justify this state-
ment by invoking causality. [Hint: Think about light-cones; how are they orientated for
r < rs?] Then, find an expression for an upper bound on the total energy that can be
released during the merger. Find a value for this upper bound for m; = my = 60M),
and confirm that this is larger than the total energy emitted due to gravitational waves
during the binary merger studied in question 17.



Solution: In Schwarzschild spacetime (8), all timelike and null paths for r <
rs are causally bounded, meaning that r; is an event horizon for the black hole
(the light cones are inwardly pointing for r < rg). This means that points in-
side the Schwarzschild radii of the original two black holes cannot lie outside the
Schwarzschild radius of the final black hole, as otherwise this would correspond to
the propagation of something outwards across the event horizon. This means that
the total area bounded by the event horizon must increase.

Given the spherical symmetry of (8), the surface area element is given by dS =
2 sin #dAd¢ as one would expect. From this, it is clear that the area bounded by a
given rg is A = 47r2. This means that

M?—m?-—m3>0 = M > \/m2 +m3.

By mass-energy equivalence, it follows that the energy that can be emitted during
a black-hole merger is bounded from above by

AEqcw < mq +mo — \/m%+m§.

For the given masses, AEqw ~ 10*® J. Now, the total initial energy of the binary

is given by Eiot = Gmima/(2rg) ~ 10*2 J. Even if all of the energy of the binary
system where released as gravitational waves, this would still be below the bound
provided by AFEqw.

19. Consider two point masses m located at (¢/2,0,0) and (—¢/2,0,0) respectively
that are constrained to move along the z-axis. These are impinged upon by a grav-
itational wave travelling along z, with metric perturbation satisfying h,, = —hy, =
Az, cos(kz —wt). Find an expression for the proper distance of each of the masses from
the origin as a function of time, to first order in the metric perturbation. Using (15),
show that the time-averaged gravitational luminosity of the particle response is given
by

G 2 694 42
(LGW>t = @m w™l Amm




Solution: The mass distribution of the two masses is given by
p(x,t) = mdé(x — x1(t)) + mo(z + z1(t)),

where the position of the masses is given by the proper distance

02

0/2
x1(t) = / ds = vV —gapdxedab
0 0
£/2 /¢ 1
/ dx /14 hy(t,0) ~ = <1+hm(t70)> .
; 2 2

Then,

1
ml*(1 4 hyy) = §m€2(1 + A, cos(wt)).

N =

I = /d3r pr = Qmw% ~

Using this, it is easy to show that

1. .. 1 4, . _

Jij = Iij - 551'3' Ia:ac = 6mw 14 Aazac sm(wt)dlag(2, —1, —1).
Then,

(Law), = 5% < J ij JU> = ?)O%m2w6€4Aim <sin2(wt)>t = im2w6€4flix.
c ¢ c

The energy flux due to gravitational radiation is given by

A

i pabg 7
Fi = = (0" 0ha).

The cross-section ogw for gravitational interaction is defined to be the ratio of the
average luminosity to the average incoming flux. Why is this a good definition of the
cross-section? Show that

2 o (wl 4 2Gm
= —7T _ Te = .
UGW 15 S c Y S C2

Give a physical interpretation of the factor (wf/c). Evaluate this numerically for m =
10kg, ¢ =10m and w = 20 rad s~! and compare this with the typical weak interaction
cross section of 1074 m?. Hence justify the statement: Gravity is the weakest force.



Solution: This is a good definition of the cross-section as it is essentially the ratio
of the response to the forcing for a gravitational wave. It will also be independent
of the amplitude of the oscillations A,,. Then:

O;h® = —kA,, sin(kz — wt), Othay = Agpwsin(kz — wt),
meaning that (k= w/c)

w2 A2 Bw? A2
Fz _ TT 2 _ TT
= gpg S ), = 552

Thus, the cross-section is given by

(Law),  87G*m2wt* 27 (w€>4

TOWE T, T 158 15\ e

as required. The factor (wf/c) is essentially the ratio of the effective ‘speed’ for the
oscillatory response to the speed of light, which we expect to be small. Evaluating
this for the given values, we find that oqw ~ 10777 m2. This is almost thirty
orders of magnitude smaller than the typical weak interaction cross section, giving
justification to the statement.




Problem Set 4: Cosmology

20. The Friedmann-Robertson-Walker (FRW) metric

ds? = —d? + a(t)? +r2d6% 4 r? sin? fdg? | (16)

1 — kr2

is a solution to Einstein’s field equations over a three-dimensional manifold of constant
curvature.

i.) What key assumptions about the nature of our universe are used in the deriva-
tion of (16)7 Give physical interpretations of the coordinate ¢, the function a(t) and
the constant k.

Solution: The two key assumptions about the nature of our universe used to derive
the FRW metric (16) are:

e Homogeneity - That, at any given time, the universe looks the same at every
point in space.

e Isotropy - That, at any given time, the universe looks the same in any direction
of observation.

The coordinate time ¢ corresponds to the proper time of isotropic observers. The
function a(t) is the scale factor that parametrises the relative expansion of the
universe. Lastly, we note that the rescaling k — k/|k|, 7 — /|k|r, a — a/\/]k|
leaves (16) unchanged. This means that the only relevant parameter is sgn(k), for
which there are three solutions:

e k = —1, corresponding to constant negative curvature (open).Fr
e k =0, corresponding to no curvature (flat).

e k =1, corresponding to constant positive curvature (closed).

ii.) Consider two observers located at some fixed comoving distance ¢ in flat
spacetime. Suppose that one observer emits a photon of wavelength A at time ¢, which
is observed by a second observer as Ay at time tg. Show that the cosmological redshift
factor z can be written as \

0

z=——1,

A

and find an expression for z in terms of a, ¢ and tg.



Solution: Considering null, radial geodesics in FRW spacetime (16), we have that

a(t) dr

Then, the comoving distance in flat spacetime is given by

to dt/ t0+At0 dt/
[ |
¢ a(t’) trae alt’)
since the comoving distance is time-independent as it is associated with the confor-
mal coordinates. Then, we note that

to+Atg to “to+Atg t+AL
t+At t to t

/tﬁmo dt’ /t+At dt’ At At
t t

dt =+

meaning that

: R
a(t") a(ty) a(t)’
where we have assumed that Aty < tg and At < t. Thus, it follows that

a(to) _ o
at) A’

a(t’)

0

1+2=

This can be re-arranged for the desired expression.

iii.) Find expressions for the Hubble constant Hy and the deceleration parameter

qo in the expansion

a(t) 1 2 2
=1—Hy(t —tg) — =qoHS(t — ¢
a(to) of 0) 2Q0 o 0) +...,

Then, show that for small z the comoving distance ¢ can be expressed as



Solution: We can expand the scale factor around the current time ¢q as
. 1. 9
a(t) = a(ty) + alto)(t — to) + ia(to)(t —t0)°+ ...

Thus, we have that

L alt) . alt)
T2 alto) T att)

(t —to) + Ldlfo)

2a<t0)(t—t0)2+...

Comparing this with the given expression, we find that

_ d(to) _ @ do = _a(to)d(to) _ _aodo
alty) ag a(to)? a2

Now, we can invert the given expression
2 1 2
Ho(t—ty) =z+az*+-- =2z — 1+§q0 e
Then comoving distance can similarly be expanded as

dt’ 1 1 1 1
l= — = — (-1 “Ho(t—1t0)?+...| = — — =221
[ |- g -] = g - R w + .

as required.

21. Consider an isotropic metric of the form
ds? = —dt? + a(t)?y;;da’da?

Why are there only four non-zero components of the Ricci tensor R,;? Show explicitly
that .
Ry = —3%, R;; = (da + 2a° + Qk‘)%'j,
in the case of the FRW metric (16). Here, the dot denotes differentiation with respect
to the coordinate time t. Write down the stress-energy tensor for a perfect fluid with
no overall velocity. Hence, show that Einstein’s field equations in the presence of a
cosmological constant A
Gap = 87GTy, — Agab7

reduce to the Friedmann equations:

L\ 2
a 8rG kA
H2:<a> B RS (7
. a 4rG A

H+H2:E:—T(p+3p)+§. (18)



Solution: There are only four non-zero components of R, due to isotropy. In order
to calculate the components of the Ricci tensor, we first need the relevant Christoffel
symbols. For this, it is useful to use following identities for the Christoffel symbols
for a symmetric metric ggp:

1
Faba = 59%8&)9@(1 (a =b permitted),

1
[, = —59(“ wgny (@ # b),

'y =0 (a,b,c distinct).
Then, we have that

) ; a
% = aavyij, Ty = %,y =1°

) = )
a ré

[7yy = —r(1 — kr?), [y =—r(1- Er?)

w 3=

in? 0, F9d>d> = —sinfcosb, F¢9¢ = cot 0.

Using these, one can show the desired expressions for Rog and R;;. It is sufficient
to do a single spatial component, as the others follow by isotropy.

The stress-energy tensor of a fluid with no overall velocity is given by

Tap = pgab + (p + P)uay, us = (1,0) = Ty = pgap + (p + p)doo-

Using our previous results, the Ricci scalar is

6. .
R = ﬁ(aa+a2+k‘),

while the components of the Einstein tensor are

1 \2 3k
Go=Ro+:R=3(2) +5
2 a a

1 o
Gij = Rij — 5(12’7in = —(2aa + a? + k)'yij.

Using the expression for the stress-energy tensor from above, Tog = p and T;; =
agp%j. Then, the timelike and spatial components of Einstein’s field equation are

a a

2 3k i 2k
3() +72:87TG,0+A, 2+<> +72:—871'Gp+/\
a a a a a

respectively. The first of these expressions is (17), while (18) follows from substi-
tuting the first expression into the second.




22. By considering (17) and (18), show that the mass density p satisfies the continuity
equation:

.G
p+3_(p+p)=0.

Show that this equation is also a consequence of stress-energy conservation. By adopting
the equation of state for a polytropic fluid p = wp, find how the density depends on
the scale factor for general w. Consider the cases of pressureless matter (w = 0),
radiation (w = 1/3) and vacuum energy (w = —1), and give physical explanations for
the dependence of each on the scale factor.

Solution: Take the time derivative of the first Friedmann equation (17), we have

that
2a a a? 87rG,+2/<:,
-] =— —a.
a\a a? 3 p a3

Substituting the first and second Friedmann equations (17) and (18) into this expres-
sion, it is a line of algebra to show the desired result. When considering stress-energy
conservation, it is useful to write the stress-energy tensor as

T4 = ¢*Tey, = diag(—p, p, p, p)-

Then, stress-energy conservation implies that
a
0= VaT% = 0,T% + T T =T’ 0T% = —dop — 35(:0 +p),

where we have used the Christoffel symbols calculated in the previous question.
Letting p = wp, we find that p o< a=31+®) We consider various values of w:

e Pressureless matter (w = 0): p,, o< a~>. This is simply the decrease in the

number density of the particles/matter as the universe is expanding with the
scale factor.

e Radiation (w = 1/3): p, o< a=*. The energy density of radiation falls off more
quickly than matter. This is because the number density of photons decreases
in the same way as the number density of pressureless matter, but individual
photons also lose energy as a~! due to cosmological redshift.

e Vacuum energy (w = —1): pp = constant. We can write the right-hand side
of Einstein’s field equations as

87GTap — Agab = 87G [Pgap + (P + P)uaup] ,
where we have defined the effective pressure and density

PP e P e

Thus, the effect of the cosmological constant is to decrease the spatial pressure
but increase the energy density; this corresponds to the energy density of the
vacuum.




We define the critical density p. to be the density for which £ = 0. Find an expression
for p. in terms of the Hubble parameter H. Show that the first Friedmann equation
(17) can be written as

H 2 aq 4 ag 3 aq 2

B o () o () e () )

(H0> [Wa—i_ma—i—ka—'—A (19)
where ag = a(tp) is the scale factor at the current time. Give expressions for the density

ratios 0y, y,, Q and Qp. Lastly, show that the second Freidmann equation (18)
evaluated at the current time can be written as

1
QO=§§:H+3wXM
(2
In a universe consisting of only vacuum energy, is the expansion of the universe accel-
erating or decelerating?

Solution: Letting £k = 0 in (17), we have that

_ 3H?

Pec = ek

Evaluating this at the current time tp, and defining the density ratios at current
time,
Pm A 1 A k 1 3k

Py
Q=" Q.= Qp=—"0 ="
YT T pet AT BHZ T peSaG

k— — - P
HZa? pe 8wGad

(19) follows directly from (17). Recalling the definition of the deceleration parameter
from question 20, we have that

From (18) evaluated at the current time g, we arrive at the desired result:

1 A 1
=—(p+3p)— 55 =2 1+ 3w;) €,
0= 55 (03~ g = 5 (14 3u)
For a universe consisting of only vacuum energy, this reduces to ¢ = —€, < 0.
This means that the expansion of the universe is accelerating.

23. By introducing the conformal time dn = dt/a, show that the FFRW metric (16)
for k = 0 can be written as

ds? = a(t)? (—dn® + dz?® + dy® + dz?) .

The metric is said to be conformally flat on some subset of the overall space. Given
that a? > 0, what is the condition for two events to be connected by a null geodesic in
FRW spacetime?



Solution: For k = 0, it is trivial to use the fact that dt = adn to write the metric
in the desired form. This means that in order for two events to be connected by a
null geodesic in FRW spacetime, they also need to be connected by a null geodesic
in flat spacetime with coordinates {7, x,y, z}. This means that 7 can be used to find
the existence of a cosmological horizon; if 7 is finite, for a (semi-)infinite domain
in time, then clearly only a subset of FRW spacetime can be connected by a null
geodesic.

Consider a universe containing pressureless matter and radiation. Show that such a
cosmological model has a past, but not a future, horizon. If a(ty) = 1, show that the
conformal time at present is given by

to 8rG
N = ; dn =2 y(\/l—i-aeq—\/aeq),
m

and give an expression for aeq. What is it’s physical interpretation?

Solution: We set Q; = Q4 = 0 in (19), such that

N 2
aN 2 —4 -3
<a) = Hj [Qa " + Qpa™?],

where we have set ag = a(tp) = 1. From the definition of conformal time, we have
that

1 1
/dnzm/da
H(]Qm V a+Q’Y/Qm

The conformal time at present is thus

0 1 ! 1 871G ) QO
0 HyQyy ™ Jo a+ Qy/Qm 3pm Q Qn

meaning that aeq = 2/ = py/pc is the scale factor at which the densities
of radiation and matter are equal, marking a crossover between the two scaling
regimes. The convergence of this integral also indicates that this model has a past
horizon. For the future horizon, we compute

dnp= ——
0

o 1 o0 1
| Y AT .
t HyQ 1 \/G+ny/0m

which is clearly divergent, implying that there is no future horizon.




24. Consider a generalised Minkowski space:
ds? = N de® = —dgg + > d¢.
i=1

de-Sitter spacetime is the maximally symmetric sub-manifold described by the con-
straint that

n
—G Yy g=a’ (20)
i=1
The Riemann tensor for such a space is given by

7(gacgbd - gadec)-

Rabcd )
v

By considering Einstein’s field equations in a vacuum with a non-zero cosmological
constant A, find a relationship between « and A in n dimensions.

Solution: Einstein’s field equations in a vacuum with non-zero cosmological con-
stant A read

1
Gap = Rap — §gabR = _Agab-

Now, it follows from the expression for R,;.q that the Ricci tensor is given by
1 . n—1
Rea = 9% Rabed = —5 (Mgbd — 9°a9bc) = ——5—Gbd
Q@ Q
while the Ricci scalar is

n(n —1) '

R = gbdth _ 5
(6%

Substituting these results into the field equation, we find that

o (=D -2)
2A '

Consider the parametrisation

& = Va? —r?sinh <t> , & =+Va?—1r%cosh <t> ,
a a

& =rcosf, & =rsinfcos¢, &4 = rsinfsing.

Show that this satisfies the constraint (20), and that this gives rise to the interval
2 A o\ o A, ! 2 120002 1 win2 A .42
ds®* = — 1—§r dt” + 1—57“ dr? + r°(d#* + sin” 6d¢”),
for n = 4. An event horizon is a hypersurface in spacetime that can only be crossed

in one direction. Does this de-Sitter spacetime have such a horizon? Illustrate your
answer using light-cone diagrams, distinguishing between the cases of A > 0 and A < 0.



Solution: Consider
—GHE+E g+
t t
= —(a? — 7?) sinh? (a) + (® — r%) cosh? () + 1% (cos? 0 + sin® f(cos? ¢ + sin’ ¢))

[0

= (a® =) 412 =0a?,

meaning that it indeed satisfies the given constraint. Then, using

1 t t
dép = —vV a2 —r2cosh (> dt + ——— sinh (> dr,
(0% « aQ _ 7”2

«

1 t t
dé1 = —v/a? —r2sinh (= ) dt + ——— cosh { = | dr,
o « a2 — ?”2 «Q

dés = cos Odr — rsin 0d6,
d€s = sin 6 cos ¢pdr + r cos 0 cos ¢df — r sin 0 sin pd ¢,
dé4 = sin @ sin ¢pdr 4 r cos 0 sin ¢df + r sin 6 cos ¢pd ¢,

we have that
ds? = —d€2 + de} + de2 + de2 + de?
r2 r2 -1
=— <1 — 2) dt® + <1 - 2> dr? 4+ 7°(d6” + sin® 6d¢?).
(0% 8]

The desired expression follows by using the relationship between o and A for n=4.

This metric has an event horizon at » = /3/A for A > 0, and no event horizon
for A < 0. This is because goo and g, reverse their character at this value of r,
corresponding to a —m /2 rotation of light cones within the space. This means that
trajectories at r > 1/3/A are causally bounded to remain within the cosmological
event horizon. This means that trajectories at r > r, are causally bounded to
remain within the cosmological event horizon. This is most easily illustrated with
an appropriate spacetime diagram showing ‘time’ orientated light cones for r < r,,
and ‘radially’ orientated light cones for r > r,.
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25. The angle Af subtended by some object of size d is given by A0 = d/D 4, where
D4 is the angular distance of the object. By considering the components of the FRW
metric (16), find an expression for D4 in terms of the radial coordinate distance to the
object and the redshift z.

Solution: For a static object at a given radius r from the observer, the FRW metric
(16) gives ds = ardf, meaning that

Af " 142z

The luminosity distance Dy, is defined such that the flux F' of a body of luminosity L are
related by F' = L/(47Dr)?, and is related to the angular distance by Dy = (1+2)2Dy4.
Show that the flux per unit area B of a body of size d and luminosity L is given by

L 1
B=————.
m2d? (1+ 2)*

Why is it so hard to observe old stars and galaxies?

Solution: The angular size of the object observed in the sky is given by A = d/Dy,
as before. If B is the flux per unit area,
F L 1
B = — = 72—7
Q1 4nD; Q
where 2 is the solid angle subtended by the object at the observer. Assuming that
the galaxy is viewed perfectly head on,

Area AG\? d \? L D?
0~ = — | = — = B= -4
(Distance to object)? " ( 2 ) " <2DA> w2d?> D?

Using the given relationship between D4 and Dy, the desired result follows. Thus,
it is very hard to observe old stars and galaxies as the measured brightness has a
strong (inverse) dependence on redshift z.




